STATISTIKA TERAPAN BISNIS PENDEKATAN DATA KUANTITATIF

– DISUSUN OLEH —

YULIUS KURNIA SUSANTO IRWANTO HANDOJO STELLA KLEMENS WEDANAJI PRASASTYO FRENGKY

SEKOLAH TINGGI ILMU EKONOMI TRISAKTI 2022

Judul:

STATISTIKA TERAPAN BISNIS PENDEKATAN DATA KUANTITATIF

Penulis: YULIUS KURNIA SUSANTO, IRWANTO HANDOJO, STELLA, KLEMENS WEDANAJI PRASASTYO, FRENGKY

Penerbit:

Sekolah Tinggi Ilmu Ekonomi Trisakti

Jl. Kyai Tapa No. 20 Grogol Jakarta 11440 Indonesia email: novia@stietrisakti.ac.id Telp.: (021)5666717 Fax.: (021)5635480

STATISTIKA TERAPAN BISNIS PENDEKATAN DATA KUANTITATIF

Penulis:

YULIUS KURNIA SUSANTO, IRWANTO HANDOJO, STELLA, KLEMENS WEDANAJI PRASASTYO, FRENGKY

> Editor & Penyunting: NOVIA WIJAYA

Desain Sampul: R. Nurdoro Widadi

ISBN: 978-623-94318-3-9

Penerbit: Sekolah Tinggi Ilmu Ekonomi Trisakti Jl. Kyai Tapa No. 20 Grogol Jakarta 11440 Indonesia email: novia@stietrisakti.ac.id Telp.: (021)5666717 Fax.: (021)5635480

Terbitan pertama 2022 Hak Cipta dilindungi Undang-Undang. Dilarang untuk memperbanyak sebagian atau seluruh isi buku ini dalam bentuk apapun, baik secara elektronis maupun mekanis, termasuk memfotokopi, merekam atau dengan sistem penyimpanan lainnya, tanpa seijin tertulis dari penerbit

Kata Pengantar

Puji syukur ke hadirat Tuhan yang Maha Kuasa yang memberi berkat dan anugrah sehingga buku ini dapat diselesaikan dengan baik. Buku ini diharapkan dapat membantu mahasiswa untuk memahami pengujian data secara statistik dengan menggunakan program SPSS, AMOS, WarpPLS, dan Eviews serta mampu untuk mengintepretasikan hasil output statistik dengan baik.

Edisi tahun 2022 ini menggunakan program SPSS versi 25, AMOS, WarpPLS, dan EViews sehingga akan terdapat perbedaan tampilan pada output dibandingkan dengan edisi sebelumnya. Beberapa revisi dan penambahan juga terjadi pada materi yang telah ada, diantaranya pada materi analisa korelasi dan regresi. Perubahan juga dilakukan contoh soal maupun latihan. Diharapkan dengan perubahan materi ini, mahasiswa bisa lebih memahami mengenai pengujian yang menggunakan statistika dalam penelitian.

Masih banyak hal-hal yang mungkin dapat dikembangkan lebih lanjut untuk penyempurnaan buku ini. Untuk itu kritik dan saran dapat dialamatkan ke: <u>novia@stietrisakti.ac.id</u> sehingga buku ini dapat memenuhi kebutuhan mahasiswa.

Terima kasih.

Jakarta, Agustus 2022 Penulis

Daftar Isi

BAB I : PENGENALAN SPSS
BAB II : GRAFIK11
BAB III : STATISTIK DESKRIPTIF, UJI KUALITAS DATA, UJI NORMALITAS DAN UJI OUTLIER19
BAB IV : UJI BEDA (ANTAR) KELOMPOK DAN CROSSTAB40
BAB V : STATISTIK NONPARAMETRIK63
BAB VI : KORELASI, SIMPLE REGRESSION DAN MULTIPLE REGRESSION71
BAB VII : MASALAH DALAM REGRESI78
BAB VIII : REGRESI LOGISTIK91
BAB IX : MODERATED REGRESSION DAN PATH ANALYSIS97
BAB X : STRUCTURAL EQUATION MODELLING (AMOS)103
BAB XI : STRUCTURAL EQUATION MODELLING (WARP-PLS)114
BAB XII : EVIEWS

BAB I

PENGENALAN SPSS

I. Pendahuluan

SPSS adalah salah satu program/software komputer yang digunakan untuk analisa statistika. Awalnya SPSS merupakan singkatan dari Statistical Program for Social Science, namun perkembangan penggunaan software ini semakin meluas tidak hanya untuk ilmu sosial saja, sehingga menjadi "Statistical Product and Service Solutions" yang dapat digunakan untuk berbagai keperluan dan aplikasi teknik statistik.

Bahasan dalam buku laboratorium Statistika Terapan Trisakti School of Management ini menggunakan *Software* SPSS versi 25. Untuk memulai program SPSS sama dengan cara membuka program lainnya yaitu dengan cara *double click* di icon SPSS yang ada di desktop atau dengan klik menu Start, pilih Programs, lalu pilih IBM SPSS Statistics, kemudian pilih IBM SPSS Statistics 25. Setelah itu akan muncul *dialog box* berikut: (tekan Close pada dialog box Welcome to IBM SPSS Statistics untuk memulai dengan *sheet* baru)

II. Pendefinisian Variabel

Variabel perlu didefinisikan terlebih dahulu sebelum data diisi dan diolah. Variabel didefinisikan pada bagian *Variable View* yang terletak di *work sheet* kiri bawah di layar monitor.

ta Untitled	1 [DataSet0]	- IBM SP	SS Statistic	s Data Editor													-	٥	×
<u>F</u> ile <u>E</u> di	t <u>V</u> iew	<u>D</u> ata	Transform	n <u>A</u> nalyze	<u>G</u> raphs	Utilities	Extensions	Window He	lp										
🔁 I				2			۳ H		A 14										
																	Visible:	0 of 0 Va	riables
	var		var	var	var	var	var	var	var	var	var	var	var	var	var	var	var	Va	ar
1																			-
2																			
3																			
4																			
5																			
6																			
7																			
8	_																		
9	_																		
10	_																		
11	_																		
12	_																		
13	_																		_
14	_																		_
15	_																		- 1
16	_																		_
17	_																		_
18	_																		_
19	_																		_
20	_																		- 1
21	_																		_
22	_																	<u> </u>	_
23																			-
																		_	1
Data Viev	Variable '	view																	
	IBM SPSS Statistics Processor is ready Unicode:ON																		

Variable View diaktifkan dengan cara klik *work sheet Variable View*. Setelah diaktifkan akan muncul tampilan berikut:

🔄 Untitled1 [DataSet0] - IBM	SPSS Statistics	Data Editor												- 0	×
Eile Edit	⊻iew Data	Transform	Analyze	Graphs	Ublibes	Estensions	Window	Help								
2		5	2			H H										
	Name	Туре	Width	Decimal	ls	Label	Values	Missing	Columns	Align	Measure	Role				
1	-															4
2																
3																
4																
5																
6				1	1.0			A								
7				1	_			_								
8			_	_	_						1					
9																
10			_	_	_											
411																
12					-											
10																
15					-											
16					-											
17																
18																
19																
20																
21																
22																
23																
24																
or	4								-	E.	1					
Data View	ariable View															
											IBA	I SPSS Statistics	Processor is ready	Unicode	ON	

1. Name

Variable Name berisi nama variabel yang dibuat. Pemberian nama variabel dapat mencapai 64 karakter. Dalam pengetikan nama variabel tidak boleh ada spasi, karakter pertama harus berupa huruf ataupun salah satu dari karakter @, # atau \$, dimana karakter terakhir tidak boleh berupa titik.

2. Type

Untuk menentukan tipe variabel, panjangnya data dan jumlah angka dibelakang tanda pemisah desimal.

a. Numeric

Data variabel berupa angka tanpa pemisah ribuan. Contoh: 2800000

b. Comma

Data variabel berupa angka dengan tanda koma sebagai pemisah ribuan, dan tanda titik sebagai pembatas desimal. Contoh: 2,800,000.00

c. Dot

Data variabel berupa angka dengan tanda titik sebagai pemisah ribuan, dan tanda koma sebagai pembatas desimal. Contoh: 2.800.000,00

d. Scientific Notation

Data variabel berupa angka dengan menggunakan E atau D sebagai tanda Eksponensial. Contoh: 2.8E+06 (Diartikan: 2.8 x 10⁶)

e. Date

Data variabel berupa tanggal, dan dapat dipilih sesuai dengan format yang dikehendaki. Contoh : Format yang dipilih <u>dd-mmm-yy</u>, diketik 2 Nov 2008 hasilnya yang ditampilkan adalah <u>02-Nov-08</u>

f. Dollar

Data variabel berupa angka dengan tanda Dollar (\$).

g. Custom Currency

Data variabel berupa angka dengan format Mata Uang yang telah ditentukan.

h. String

Data variabel berupa huruf maksimal 255 karakter.

3. Width

Untuk menentukan besarnya angka atau huruf yang digunakan.

4. Decimals

Untuk memberikan banyaknya angka dibelakang koma untuk pemisah ribuan berupa titik.

5. Label

Label diisi dengan *Variabel Name* yang akan diberi label. Contoh: Jenis Kelamin Nama Label yang diberikan untuk pengisian data dengan label.

6. Values

Values digunakan untuk variabel yang datanya berupa nominal dan ordinal. Contoh: variabel jenis kelamin terdiri dua kategori, yaitu pria dan wanita, angka 1 untuk kategori pria dan angka 2 untuk kategori wanita, sehingga dalam pengisian data diketik hanya angka 1 dan 2.

Pada bagian *Value Label* diberi angka yang mewakili suatu kategori data variabel. Caranya *Value* diisi dengan sebuah angka nominal dan *Value Label* diisi dengan kategori yang diwakili oleh angka tersebut, kemudian klik Tombol *Add*, masukkan sebuah angka yang mewakili sebuah data variabel, setelah selesai OK.

Contoh : Value diisi dengan 1, Value Label diisi dengan Pria, klik Add. Value diisi dengan 2, Value Label diisi dengan Wanita, klik Add. Klik OK

7. Missing

Missing digunakan jika ada angka tertentu yang tidak ingin dimasukkan dalam perhitungan statistik. Pada pilihan ini ada tiga alternatif, yaitu:

a. No Missing Value

Bila semua angka dalam variabel ikut dalam perhitungan.

b. Discrete Missing Value

Bila beberapa angka dalam variabel tersebut tidak ikut dalam perhitungan atau beberapa angka tidak ada (1, 2 atau 3 buah *Missing Value*), maka isi angka *Missing Value* pada kotak yang tersedia.

c. Range Plus One Discrete Missing Value

Bila angka variabel yang tidak masuk dalam perhitungan terdiri dari interval suatu angka ditambah angka yang tidak termasuk dalam interval tersebut, misalnya 8-12 dan 14, maka diketik nilai terendah dan nilai tertinggi dari *missing value* tersebut pada kotak tersedia dan masukkan angka lainnya pada *Discrete Value*.

Dalam pengolahan data statistik, disarankan untuk **memilih** *No Missing Value*, untuk itu sebaiknya pada waktu mencari data harus selengkap mungkin dan tidak ada yang terlewatkan sama sekali.

8. Columns

Untuk menentukan besarnya kolom *variable*. Lebar Kolom maksimal 255. Penentuan Lebar Kolom dapat juga dilakukan dengan proses *drag* pada bagian pembatas *Heading Column*.

9. Align

Untuk perataan variable data yang diinput.

10. Measure

Untuk memasukkan skala pengukuran variabel yang digunakan baik berupa nominal (kategori suatu subjek, contoh jenis kelamin yang terdiri dari wanita dan pria), ordinal (ranking terhadap suatu kategori atau mempunyai tingkatan, contoh tingkat keinginan membeli suatu produk) dan scale (data numerik dengan skala interval atau rasio).

III. Import Data Dari Excel

Untuk mengimpor data dari Excel maka langkah-langkah yang harus dilakukan adalah:

- 1. Buatlah data di Excel dengan ketentuan-ketentuan sebagai berikut:
 - a. Nama variabel harus diletakkan di baris paling pertama di worksheet Excel.
 - b. Nama variabel tidak boleh melebihi 64 karakter dan tidak boleh ada spasi.
 - c. Isi data variabel di baris berikutnya setelah nama variabel.

N	Aicro	soft Exce	l - contoh1	.xls				(
	Eile	<u>E</u> dit <u>V</u> ie	w <u>I</u> nsert	F <u>o</u> rmat	<u>T</u> ools <u>D</u>	ata <u>W</u> indov	v <u>H</u> elp		- 8 ×
	»	Arial	•	10 🗸	B	≣ ඕ ,	.00.	🛛 🕶 💁 🕶	<u>A</u> - ~ ~
	D1	-	fx v	/ar4					
		А	В		С	D		E	F 🛓
1	var1		var2	var	3	var4			
2	abc		1	111	1.2		-1		
3	cde		22	222	2.3		-2		
4	efg		3.	333	3.4		-3		_
R A	•	- - - - - - - - - - - - - -	1/Sheet2	/ Sheet	t3/	•			
Read	ły								

- 2. Ingatlah di lembar *worksheet* manakah data yang hendak diimpor, dalam contoh ini maka data terdapat di Sheet1.
- **3.** Simpan dan tutup file Excel yang hendak diimpor dan ingat nama file Excel tersebut. (Dalam contoh ini adalah: contoh1.xls)
- 4. Bukalah program SPSS

ne Edit View Data J	ransform	enaiyz	e grapns	Quintes	Extensio	ons <u>vv</u> e	noow He	ab.									
New		*		=													
Open		1	Data_													Vicible: 0 o	d D Use a N
Import Data		,	谢 Syntax			100			1							visiole. 0 0	no valiau
Glose	Ctrl+F4		@ Qutput	Va	17	var	VBf	var	Var	VBr	var	var	Var	o vario	Var	Vair	var
<u>Save</u>	Ctrl+S		🔂 Sgript														
Save As										1							-
💾 Save All Data																	
Export		*															
Marg File Read Only																	
Revert to Saved File																	
f Rena <u>m</u> e Dataset																	
Display Data File Information		۲		_					_								_
🧕 Cache Data				_					_								
Stop Processor	Ctrl+Perio	d		_	-			-	-								_
Switch Server					_												_
Repository				-	-			-	-	-							
Print Preview			-														-
Print.	Ctrl+P																
Welcome Dialog																	_
Recently Used Data		,															
Recently Used Files			1														
Fxit																	
			1														
22																	
23						_					-						
4		-			10 C											_	1

- 5. Bukalah: File, Open, Data, maka akan keluar tampilan di bawah ini, untuk itu:
- 6. Pastikanlah hal-hal berikut:

7. Kemudian akan keluar tampilan sebagai berikut:

8. Maka proses impor data akan selesai.

ta *Untitled2	[DataSet1]	- IBM SPSS Statistics	Data Editor												- 0	×
<u>F</u> ile <u>E</u> dit	View	Data <u>T</u> ransform	Analyze Graphs	<u>U</u> tilities E <u>x</u> tensio	ons <u>W</u> indo	w <u>H</u> elp										
🔁 H		I r 2	a 📓 🕌	= IP H		1×	0									
															Visible: 4 of 4	Variables
	Ko 🎝 de Per.	UmurObligasith n	💰 KuponObligasi	PeringkatObliga si	var	var	var	var	var	var	var	var	var	var	var	VE
1	BBCA	5	10	1												
2	AALI	7	12	0												
3	SSIA	6	11	1												
4	BKSL	4	17	1												
5	BUMI	5	20	0												
6	GGRM	10	11	0												
7	HMSP	12	17	1												
8	BBNI	7	12	0												
9	BBMR	8	16	1												
10	ASII	9	18	1												
11	ASRI	5	12	1												
12	INDF	3	10	0												
13	BBTN	10	9	0												
14	UNTR	11	12	1												
15	UNVR	14	17	1												
16	TMPI	10	13	0												
17	SUGI	20	18	1												
18	BIPI	18	20	1												
19	BAPA	27	20	0												
20	MIRA	4	12	1												
21	SMDM	5	16	0												
	1	•	47	1 a l		1			1	1					<u> </u>	E E
Data View	Variable V	iew									IBM SPSS Sta	listics Process	sor is ready	Unico	ode:ON	

9. Cara lain untuk memindahkan data dari Excel ke SPSS adalah dengan memblok *range* data yang hendak di*copy*, kemudian *copy* data variabel (tekan Ctrl + C) yang terdapat di Excel dan mem-*paste*-nya (tekan Ctrl + V) ke SPSS. (Namun untuk cara ini pastikan bahwa format cell yang terdapat di Excel adalah dalam format: General).

IV. Distribusi Frekuensi

Data yang telah diolah akan lebih mudah dianalisa jika sudah disusun dalam sebuah distribusi frekuensi. Rumus untuk menyusun distribusi frekuensi menurut Sturgess yang dikutip dari *Statitik Teori dan Aplikasi*, oleh Supranto (2008) adalah:

1. Jumlah kelas

$$k = 1 + 3,322 \log n$$

Keterangan k: jumlah kelas

Log: bilangan logaritma

n: jumlah sampel

2. Interval kelas

$$c = \frac{Xn - X_1}{k}$$

Keterangan c: interval kelas

k: banyaknya kelas

Xn: nilai observasi terbesar

X₁: nilai observasi terkecil

Pembulatan selalu ke atas

3. Batas kelas

Tentukan nilai dari batas bawah dan batas atas masing-masing kelas.

Latihan Distribusi Frekuensi

Buka data file Nutrition.xlsx dari Local Disk (D) "A sample of 100 nutrition bars and found the caloric content of each". Import data dari Excel ke SPSS, lalu buatlah distribusi frekuensinya!

- 1. Tentukan jumlah kelas dari 100 data observasi!
- 2. Tentukan panjang interval kelas!

3. Tentukan batas kelas dari setiap kelas yang ada!

Kelas	Nilai	Frekuensi

- 4. Masukkan nilai setiap observasi ke dalam kelompok kelasnya. Jika pengerjaan secara manual maka setiap nilai observasi dimasukkan satu per satu dengan sistem tally. SPSS menyediakan solusi yang lebih cepat dari pada sistem tally, yaitu dengan cara nilai diubah ke variabel yang lain.
 - a. Klik Transform di Menu Bar, pilih Recode, pilih Into Different Variable.
 Catatan: Pilih Into Same Variable jika data yang di-recode diganti dengan data yang telah direcode. Pilih Into Different Variable, jika data yang direcode tetap ada dan ditambah dengan satu variabel data yang telah direcode.
 - b. Double click Caloriceach atau klik Caloriceach satu kali, kemudian klik tanda panah ke kanan untuk memasukkan variabel Caloriceach di Numeric Variable→Output Variable box.
 - c. Ketik Kelas di Name pada Output Variable, kemudian klik Change.
 - d. Klik Old and New Values, klik Range.
 - e. Pada Range ketik batas kelas pertama yaitu 50 through 117 di Old Value, kemudian pada bagian New Value, di Value ketik 1, kemudian klik Add. Masukkan batas kelas kedua dan seterusnya dengan cara yang sama.
 - f. Klik Continue, kemudian klik Ok.
 - g. Perhatikan pada worksheet **Data View** muncul variabel baru yaitu **Kelas**. Periksa kembali apakah nilai dikelompokkan ke dalam kelas yang seharusnya.
- 5. Untuk menampilkan distribusi frekuensi dalam bentuk data berkelompok gunakan value label untuk mendefinisikan nilai interval dari masing-masing kelas.
 - a. Klik worksheet Variable View.
 - b. Pada variabel Kelas, masukkan Values seperti berikut:
 - Value 1, value label **50-117**
 - Value 2, value label 118-185, dan seterusnya
 - c. Klik Analyze pada Menu Bar, pilih Descriptive Statisitcs, pilih Frequencies.
 - d. Masukkan variable **Kelas** ke *Dialog Box* **Variable(s)** dengan cara Double klik atau klik satu kali Kelas, kemudian klik tanda panah ke kanan.
 - e. Aktifkan Display frequency tables.
 - f. Klik Ok.
- 6. Simpan dengan nama LatDistribusiFrekuensi di Local Disk (D).
- 7. Tutup window **Output** dengan cara klik 🖾 di pojok kanan atas layar monitor.

Distribusi frekuensi selain ditampilkan dalam bentuk tabel dapat pula disajikan dengan grafik Histogram. Langkah-langkah menampilkan distribusi frekuensi dalam bentuk Histogram adalah sebagai berikut :

- 1. Klik Analyze pada Menu Bar, pilih Descriptive Statistics, pilih Frequencies.
- 2. Masukkan variable **Kelas** ke Dialog Box **Variable(s)** dengan cara Double klik atau klik satu kali Kelas, kemudian klik tanda panah ke kanan.
- 3. Klik Charts, aktifkan Histogram dan Normal Curve, klik Continue, lalu Ok.

Praktikum 1

Mr. Feri merupakan salah satu trainer dari Edugate yang bertanggung jawab dalam melaksanakan Business Simulation. Ia mengumpulkan data mengenai profit and loss dari 100 tim yang mengikuti Business Simulation yang diadakan oleh Edugate pada bulan Juli 2022. Data yang berhasil dikumpulkan adalah sebagai berikut (dalam jutaan \$):

61	67	62	74	83	61	66	94	68	49
88	58	50	90	104	52	63	54	93	71
59	103	73	72	105	103	59	63	88	89
95	53	101	69	58	89	58	61	48	70
86	105	94	107	58	62	98	85	85	72
97	102	94	59	65	88	75	76	94	65
58	63	92	50	72	75	63	91	81	67
57	60	94	80	60	68	72	86	54	83
108	61	80	65	79	90	106	74	98	74
67	109	108	103	59	95	71	65	93	104

- 1. Buatlah menjadi data berkelompok berdasarkan data biaya diatas pada variabel baru, yaitu **profitnloss.**
- Tampilkan tabel distribusi frekuensi variabel profitnloss dan grafik Histogram beserta kurva normal. Lakukan interpretasi terhadap output Anda.
- 3. Simpan data dan output dengan nama file HasilPrak1 di Local Disc D.
- 4. Print out dan kumpulkan hasil print Anda

BAB II GRAFIK

Data selain perlu diolah juga perlu disajikan dalam bentuk yang lebih mudah dibaca, dimengerti dan menarik. Penyajian data tersebut dapat berbentuk tabel dan grafik. SPSS menyediakan fasilitas untuk membuat grafik dengan berbagai jenis grafik. Tabel data terlebih dahulu diinput di data sheet SPSS. Secara umum, grafik yang dibuat oleh SPSS dibagi dalam tiga bagian, yaitu:

1. Summaries for group of cases

Grafik menampilkan data untuk grup tertentu dalam sebuah variabel.

Contoh: Tabel yang terdiri nama karyawan dan tingkat pendidikan dibuat grafik mengenai pendidikan. Grafik yang akan ditampilkan berapa orang yang berpendidikan SMA, Akademi, Sarjana dan Pasca Sarjana.

2. Summaries of separate variables

Grafik menampilkan data untuk tiap variabel yang terpisah sebagai perbandingan.

Contoh: Tabel yang terdiri nama karyawan, tingkat pendidikan dan gaji dibuat grafik perbandingan variabel pendidikan dengan variabel gaji.

3. Values of individual cases

Grafik menampilkan data untuk setiap case secara individual.

Contoh: Tabel yang terdiri nama karyawan, tingkat pendidikan dan gaji dibuat grafik untuk menampilkan gaji dari masing-masing karyawan.

Grafik Batang (Bar Chart) disajikan dalam tiga bentuk grafik, yaitu:

- 1. Simple, yaitu grafik batang yang ditampilkan hanya satu variabel X dan variabel Y.
- 2. Clustered, yaitu grafik batang yang ditampilkan lebih dari satu variabel X dan satu variabel Y.
- Stacked, yaitu grafik batang yang menampilkan lebih dari satu variabel X dan satu variabel Y. Variabel X disusun bertumpuk ke atas.

Grafik Garis (Line Chart) disajikan dalam tiga bentuk grafik, yaitu:

- 1. Simple, yaitu grafik garis yang menampilkan hanya satu variabel X dan variabel Y.
- Multiple, yaitu grafik garis yang menampilkan lebih dari satu variabel X dan satu variabel Y dengan garis yang menghubungkan variabel Y pada X₁ dengan variabel Y pada X₂.
- Drop Line, yaitu grafik garis yang menampilkan satu variabel X dan lebih dari satu variabel Y dengan garis vertikal yang menghubungkan variabel Y₁ dengan variabel Y₂ pada X.

Grafik Lingkaran (Pie Chart) disajikan dalam bentuk data grafik, yaitu:

- 1. **Summaries for group of cases,** yaitu grafik lingkaran yang menampilkan ringkasan data suatu lingkaran untuk satu kategori variabel.
- 2. Summaries of separate variables, yaitu grafik lingkaran yang menampilkan ringkasan data dua atau lebih variabel.
- 3. Values of individual cases, yaitu grafik lingkaran yang ditampilkan hanya satu variabel X dan satu variabel Y.

Latihan Grafik

Manajer *Human Capital* Green Co. ingin melakukan penelitian mengenai besarnya gaji karyawan Green Co. di ketiga kantor cabang dari tahun 2008 sampai dengan tahun 2010. Ia ingin mengetahui apakah terdapat kecenderungan kenaikan gaji karyawan atau tidak seiring dengan tingkat inflasi yang terjadi. Berikut adalah data yang diperoleh dari penelitian yang dilakukan oleh Manajer *Human Capital* Green Co.

Tahun 2018

Kantor Cabang Jakarta:

- Karyawan yang memiliki gaji minimal Rp 8.000.000 sebanyak sepuluh orang, dua orang diantaranya adalah wanita.
- Karyawan yang memiliki gaji antara Rp 4.000.000 dan Rp 8.000.000 sebanyak 50 orang, setengahnya adalah wanita.
- Jumlah karyawan pria yang memiliki gaji maksimal Rp 4.000.000 sebanyak 15 orang yang merupakan setengah total karyawan yang memiliki gaji maksimal Rp 4.000.000

Kantor Cabang Surabaya:

- Total karyawan di kantor cabang Surabaya sebanyak 120 orang dengan perbandingan karyawan yang memiliki gaji minimal Rp 8.000.000, gaji antara Rp 4.000.000 dan Rp 8.000.000 serta gaji maksimal Rp 4.000.000 adalah sebesar 2 : 3 : 5.
- 2) Perbandingan banyaknya karyawan pria dan wanita adalah 1 : 3.

Kantor Cabang Medan:

- Banyaknya karyawan yang memiliki gaji minimal Rp 8.000.000 sama dengan jumlah karyawan dengan gaji yang sama di kantor cabang Jakarta dengan karyawan wanita sebanyak empat orang.
- 2) Jumlah karyawan yang memiliki gaji antara Rp 4.000.000 dan Rp 8.000.000 berjumlah 1,5 kali dari jumlah karyawan yang memiliki gaji yang sama di kantor cabang Surabaya, dengan karyawan pria sebanyak 21 orang.
- Dari 28 orang karyawan yang memiliki gaji maksimal Rp 4.000.000, 75% diantaranya adalah pria.

Tahun 2019

Kantor Cabang Jakarta:

- Jumlah karyawan yang memiliki gaji minimal Rp 8.000.000 meningkat sebanyak dua orang dari tahun 2008 dengan jumlah karyawan pria tetap.
- 2) Karyawan wanita yang memiliki gaji antara Rp 4.000.000 dan Rp 8.000.000 sebanyak 14 orang yang merupakan 25% dari total karyawan yang rentang gajinya antara Rp 4.000.000 dan Rp 8.000.000.
- 3) Karyawan wanita yang memiliki gaji maksimal Rp 4.000.000 lebih banyak delapan orang daripada jumlah karyawan wanita yang memiliki gaji antara Rp 4.000.000 dan Rp 8.000.000 dengan total karyawan yang memiliki gaji maksimal Rp 4.000.000 sebanyak 58 orang.

Kantor Cabang Surabaya:

- Karyawan yang memiliki gaji minimal Rp 8.000.000 sebanyak tiga orang wanita dan delapan orang pria.
- 80% dari total karyawan yang memiliki gaji antara Rp 4.000.000 dan Rp 8.000.000 adalah pria dengan total karyawan sebanyak 60 orang.
- Jumlah karyawan pria dan wanita yang memiliki gaji maksimal Rp 4.000.000 sama banyaknya yaitu masing-masing 27 orang.

Kantor Cabang Medan:

- 1) Dari 16 orang karyawan yang memiliki gaji minimal Rp 8.000.000, enam diantaranya adalah wanita.
- 2) Karyawan pria yang memiliki gaji antara Rp 4.000.000 dan Rp 8.000.000 lebih sedikit empat orang jika dibandingkan dengan jumlah karyawan pria dengan rentang gaji yang sama di kantor cabang Surabaya, sedangkan karyawan wanita sama banyaknya dengan jumlah karyawan wanita di kantor cabang Jakarta.
- Jumlah karyawan yang memiliki gaji maksimal Rp 4.000.000 sama dengan tahun lalu namun terjadi penurunan jumlah karyawan pria sebanyak tiga orang.

Tahun 2020

Kantor Cabang Jakarta:

- Total karyawan di kantor cabang Jakarta lebih banyak 25% dibandingkan dengan total karyawan di kantor cabang Surabaya pada tahun 2008 dengan perbandingan karyawan yang memiliki gaji minimal Rp 8.000.000, gaji antara Rp 4.000.000 dan Rp 8.000.000 serta gaji maksimal Rp 4.000.000 adalah sebesar 1 : 2 : 3.
- 2) Jumlah karyawan pria yang memiliki gaji minimal Rp 8.000.000 sebanyak tujuh orang, yang memiliki gaji antara Rp 4.000.000 dan Rp 8.000.000 sebanyak 15 orang, dan yang memiliki gaji maksimal Rp 4.000.000 sebanyak 35 orang.

Kantor Cabang Surabaya:

- 1) Terjadi peningkatan karyawan pria sebanyak lima orang dibandingkan tahun lalu dengan jumlah karyawan wanita tetap untuk rentang gaji minimal Rp 8.000.000
- Jumlah karyawan wanita yang memiliki gaji antara Rp 4.000.000 dan Rp 8.000.000 sebanyak 32 orang yang sama dengan jumlah karyawan pria.
- Jumlah karyawan yang memiliki gaji maksimal Rp 4.000.000 sebanyak 75 orang dengan karyawan wanita sebanyak 32%.

Kantor Cabang Medan:

- 1) Seperempat dari 88 karyawan memiliki gaji minimal Rp 8.000.000 adalah pria.
- Karyawan yang memiliki gaji antara Rp 4.000.000 dan Rp 8.000.000 sebanyak 30 pria dan 28 wanita.
- Jumlah karyawan wanita yang memiliki gaji maksimal Rp 4.000.000 adalah 1,5 kali lebih banyak daripada karyawan pria yang berjumlah 26 orang.

Berdasarkan data di atas, Saudara terlebih dahulu diminta untuk mengolah dan menyajikannya dalam bentuk:

- a. Tabel empat arah yang menggambarkan tahun, kantor cabang, gaji karyawan dan jenis kelamin.
- b. Tabel tiga arah yang menggambarkan tahun, kantor cabang dan gaji karyawan.
- c. Tabel dua arah yang menggambarkan tahun dan gaji karyawan.

Inputlah data gaji karyawan masing-masing kelompok per tahun dengan *variable view* sebagai berikut:

- 1. tahun, Numeric, 10, Center
- 2. maksimal_4, Dot, 10, Decimal 0, Right
- 3. antara4_8, Dot, 10, Decimal 0, Right
- 4. Minimal_8, Dot, 10, Decimal 0, Right
- d. Buat Grafik Garis untuk Gaji Karyawan antara Rp 4.000.000 sampai Rp 8.000.000 Green Co. periode 2018-2020:
 - 1. Klik Graph pada Menu Bar, pilih Line
 - 2. Aktifkan pilihan Simple dengan cara klik di grafik Simple
 - 3. Pada Data in Chart are, pilih Values of Individual Cases
 - 4. Klik Define
 - 5. Masukkan variabel antara4_8 ke Line Represent dengan cara klik antara4_8, kemudian klik tanda panah ke kanan Line Represent. Catatan Pastikan pada Dialog Box Category Labels pilihan Case Number yang sedang aktif
 - 6. Aktifkan **Variabel** yang ada di Dialog Box Category Labels. Masukkan variabel **tahun** ke Variabel dengan cara klik **tahun**, kemudian klik tanda panah ke kanan Variabel
 - Klik Titles yang terletak di pojok kanan atas dialog box Define Simple Line: Values of Individual Cases
 - 8. Ketik "Grafik Gaji Karyawan antara 4-8 juta Green Co." pada Line 1 dan ketik "Periode 2018-2020" pada Line 2, klik Continue
 - 9. Klik Ok
 - 10. Grafik yang telah dibuat akan diedit dengan ketentuan sebagai berikut:
 - a. Judul dibuat rata tengah
 - b. Sumbu X diberi keterangan Tahun, dengan perataan tengah
 - c. Sumbu Y diberi keterangan Jumlah Karyawan, dengan perataan tengah

- Untuk mengedit grafik, *double click* di grafik yang ada dengan demikian muncul SPSS Chart Editor
 - a. Double Click di judul, pada Title Justification pilih Center
 - b. *Double Click* di sumbu X, pada Axis Title ketik **Tahun** dan pada Title Justification, pilih **Center**
 - c. *Double Click* di sumbu Y, pada Axis Title ketik dalam Rupiah dan pada Title Justification, pilih Center
- 12. Untuk mengakhiri proses pengeditan grafik klik tanda silang di pojok kanan atas
- e. Buat Grafik Lingkaran Gaji Karyawan minimal Rp 8.000.000 periode 2018 sampai 2020:
 - 1. Klik Graph pada Menu Bar, pilih Pie
 - 2. Pada Data in Chart are, pilih Values of Induvidual Cases
 - 3. Klik Define
 - 4. Masukkan variabel ke Slices Represent dengan cara klik Minimal_8, kemudian klik tanda panah ke kanan Slices Represent. Catatan pastikan pada Dialog Box Slice Labels, pilihan Case Number sedang aktif
 - 5. Aktifkan pilihan Variabel yang ada di Dialog Box Slice Labels. Masukkan variabel **tahun** ke Variabel dengan cara klik **tahun**, kemudian klik tanda panah ke kanan Variabel
 - Klik Titles yang terletak di pojok kanan atas dialog box Define Pie: Values of Individual Cases
 - Ketik "Grafik Gaji Karyawan Minimal 8 juta Green Co." pada Line 1 dan ketik "Periode 2018-2020" pada Line 2, klik Continue
 - 8. Klik OK
 - 9. Grafik yang telah dibuat akan diedit dengan ketentuan sebagai berikut:
 - i. Judul dibuat rata tengah
 - Untuk mengedit grafik, double click di grafik yang ada dengan demikian muncul SPSS Chart Editor
 - iii. Double Click di judul, pada Title Justification pilih Center
 - 10. Untuk mengakhiri proses pengeditan grafik klik tanda silang di pojok kanan atas

- f. Buat Grafik Batang komponen berganda Gaji Karyawan Green Co. periode 2018 sampai 2020:
 - 1. Klik Graph pada Menu Bar, pilih Bar
 - 2. Aktifkan pilihan Stacked dengan cara klik di grafik Stacked
 - 3. Pada Data in Chart are, pilih Values of Individual Cases
 - 4. Klik Define
 - 5. Masukkan variabel Maksimal_4, Antara4_8 dan Minimal_8 ke Bar Represent dengan cara klik Maksimal_4, Antara4_8 dan Minimal_8, kemudian klik tanda panah ke kanan Bar Represent Catatan Pastikan pada Dialog Box Category Labels pilihan Case Number yang sedang aktif
 - 6. Aktifkan **Variabel** yang ada di Dialog Box Category Labels. Masukkan variabel **tahun** ke Variabel dengan cara klik **tahun**, kemudian klik tanda panah ke kanan Variabel
 - Klik Titles yang terletak di pojok kanan atas dialog box Define Stacked Bar : Values of Individual Cases
 - 8. Ketik "Grafik Gaji Karyawan Green Co." pada Line 1 dan ketik "Periode 2018-2020" pada Line 2, klik Continue, Kemudian klik OK.
 - 9. Grafik yang telah dibuat akan diedit dengan ketentuan sebagai berikut:
 - i. Judul dibuat rata tengah
 - ii. Sumbu X diberi keterangan Tahun, dengan perataan tengah
 - iii. Sumbu Y diberi keterangan dalam Rupiah, dengan perataan tengah
 - Untuk mengedit grafik, *double click* di grafik yang ada dengan demikian muncul SPSS Chart Editor
 - i. Double Click di judul, pada Title Justification pilih Center
 - ii. Double Click di sumbu X, pada Axis Title ketik Tahun dan pada Title Justification,pilih Center
 - iii. Double Click di sumbu Y, pada Axis Title ketik Jumlah Karyawan dan pada Title
 Justification, pilih Center, kemudian klik OK.
 - 11. Untuk mengakhiri proses pengeditan grafik klik tanda silang di pojok kanan atas
 - 12. Simpan dengan nama LatGrafik di Local Disk D.

Praktikum 2

Manajer Penjualan Metime Group telah mengumpulkan data laporan penjualan dari ketiga merek *spring bed* yang dipasarkan perusahaan yaitu King, Roman, Floren. Data tersebut telah disajikan dalam grafik berikut ini:

Berdasarkan grafik di atas, buatlah:

- 1. Tabel yang menggambarkan bulan dan penjualan dari ketiga merek *spring bed* Medtime Group.
- Grafik Batang Berganda untuk penjualan ketiga merek *spring bed* Medtime Group Bulan 1 sampai Bulan 7.
- 3. Grafik Garis untuk penjualan merek Roman Bulan 1 sampai Bulan 7.
- 4. Grafik Garis Berganda untuk penjualan ketiga merek *spring bed* Medtime Group Bulan 1 sampai Bulan 7.
- 5. Grafik Lingkaran penjualan merek King Bulan 1 sampai Bulan 7.
- 6. Simpan data dan output dengan nama HasilPrak2 di Local Disk D.
- 7. Print hasil output dan kumpulkan.

BAB III

STATISTIK DESKRIPTIF, UJI KUALITAS DATA, UJI NORMALITAS DAN UJI OUTLIER

Statistik Deskriptif adalah teknik statistik yang bertujuan memberikan penjelasan mengenai karakteristik dari suatu kelompok data atau lebih sehingga pemahaman akan ciri-ciri yang unik atau khusus dari kelompok data tersebut diketahui.

I. Central Tendency

Salah satu statistik deskriptif yang utama adalah pengukuran *central tendency* (kecenderungan memusat). Tujuan utama dari penentuan *central tendency* adalah untuk menentukan suatu ukuran (atau nilai) tertentu yang dapat mewakili penggambaran suatu kelompok data. *Central Tendency* yang ada di SPSS meliputi:

- 1. Mean (rata-rata hitung dari sekelompok data)
- 2. Median (nilai tengah dari sekelompok data)
- 3. Mode ((Modus) nilai dari sekelompok data yang mempunyai frekuensi tertinggi)
- 4. Sum (jumlah nilai keseluruhan dari sekelompok data)

Lakukan prosedur berikut untuk menghitung Mean, Median, Modus dan Sum dari variabel Usia:

- 1. Buka file **Deskriptif.Sav** di Drive D.
- 2. Klik menu Analyze pada menu bar, pilih Descriptive Statistics, pilih Frequencies.

	Variable(s):	Statistics.
Gender [gender]		Charte
Bidang [bidang]		
Gaji Karyawan [gaji]		<u>F</u> ormat
🖉 Usia (usia)		Bootstrap.
Pengalaman Keria (
Pendidikan Karvaw		
Charles frequency to blee		

- 3. Untuk **Display frequency tables**, apabila nilai data keseluruhan ingin ditampilkan maka diberi centang. Apabila nilai data keseluruhan tidak ingin ditampilkan, maka tidak diberi centang dengan cara mengklik tanda centang tersebut.
- 4. Klik variabel **usia**, kemudian klik tombol anak panah ke kanan untuk memasukkan usia ke dalam kotak **Variable(s)**. Kemudian klik **Statistics**.

			Central Tendency
🔟 Quartiles			🥅 Mean
Cut points for:	10	equal groups	🔲 Me <u>d</u> ian
Percentile(s):			Mode
Add			📃 <u>S</u> um
244			
Change			
Remove			
			Values are group midpaints
			Values are group midpoints
Dispersion			Values are group midpoints
Dispersion Std. deviation	Minir	num	 Values are group midpoints Distribution Skewness
Dispersion	Minir	num	 Values are group midpoints Distribution Skewness Kurtosis

 Pada bagian Central Tendency klik Mean, Median, Mode dan Sum kemudian klik Continue. Pada kotak dialog Frequencies, klik OK. Hasilnya akan ditampilkan pada Output1 – SPSS Output Navigator.

II. Percentile Value

Data dapat dibagi menjadi beberapa bagian. Jika data dibagi menjadi 4 bagian yang sama disebut dengan **Quartile**, jika data dibagi menjadi 10 bagian disebut dengan **Decile** dan jika dibagi menjadi 100 bagian yang sama disebut dengan **Percentile**. Lakukan prosedur berikut untuk menghitung **Quartile 1**, **Decile 4**, dan **Percentile 85** untuk variabel **usia**.

- Prosedur ini bisa dilakukan baik di SPSS Data Editor maupun di SPSS Output Navigator. Klik menu Analyze pada menu bar pilih Descriptive Statistics, pilih Frequencies, kemudian klik tombol Reset untuk menghapus perintah perhitungan Central Tendency.
- 2. Klik variabel **usia**, kemudian klik tombol anak panah ke kanan untuk memasukkan gaji ke dalam kotak **Variable(s)**. Kemudian klik **Statistics**.
- Pada bagian Percentile Values, klik Quartiles, Cut points for 10 equal groups dan Percentile, kemudian ketik 85, klik Add, kemudian klik Continue. Pada kotak dialog Frequencies, klik Ok. Hasilnya akan ditampilkan pada Output1 – SPSS Output Navigator.

III. Dispersion

Pada umumnya rata-rata diasumsikan sebagai nilai yang mewakili sekelompok data. Dalam kenyataan rata-rata tidak dapat mewakili sekelompok data dengan baik ketika kelompok data tersebut bersifat heterogen (bervariasi). Untuk mengetahui besarnya variasi tersebut maka data tersebut dihitung dengan dispersil. Dispersil yang tersedia pada program SPSS adalah:

- 1. Standard Deviation (Simpangan dari observasi terhadap rata-ratanya)
- 2. Variance (Variansi dari data)
- 3. Range (Selisih nilai data tertinggi dengan nilai data terendah)
- 4. Minimum (Nilai data terendah)
- 5. Maximum (Nilai data tertinggi)
- 6. S.E. Mean

Lakukan prosedur berikut untuk menghitung Standard Deviation, Variance, Range, Minimum dan Maximum untuk variabel pengalaman.

- 1. Klik menu Analyze pada menu bar pilih Descriptive Statistics, pilih Frequencies, kemudian klik tombol Reset untuk menghapus perintah perhitungan Percentile.
- 2. Klik variabel **pengalaman**, kemudian klik tombol anak panah ke kanan untuk memasukkan gaji ke dalam kotak **Variable(s)**. Kemudian klik **Statistics**.
- Pada bagian Dispersion, klik Std. Deviation, Variance, Range, Minimum dan Maximum, kemudian klik Continue. Pada kotak dialog Frequencies, klik Ok. Hasilnya akan ditampilkan pada Output1 – SPSS Output Navigator.

IV. Distribution

Untuk mengetahui distribusi penyebaran data, maka dihitung tingkat kemencengan data (Skewness/ α 3) dan tingkat keruncingan data (Kurtosis/ α 4).

I. Tingkat kemencengan (Skewness)

1. Kurva simetris (Mean = Median = Modus), $\alpha 3 = 0$

Mod = Med = Mean

- 2. Kurva tidak simetris (Mean \neq Median \neq Modus)
 - a. Kurva menceng ke kiri ($\alpha 3 < 0$)

Mean < Med < Modus

b. Kurva menceng ke kanan ($\alpha 3 > 0$)

Mod < Med < Mean

II. Tingkat keruncingan (Kurtosis)

b. Platykurtis ($\alpha 4 < 3$)

c. Mesokurtis ($\alpha 4 = 3$)

Lakukan prosedur berikut untuk menghitung kemencengan (skewness) dan keruncingan (kurtosis) variabel **Pengalaman**.

- Prosedur ini bisa dilakukan baik di SPSS Data Editor maupun di SPSS Ouput Navigator. Klik menu Analyze pada menu bar pilih Descriptive Statistics, pilih Frequencies, kemudian klik tombol Reset untuk menghapus perintah perhitungan Dispersil.
- 2. Klik variabel **Pengalaman**, kemudian klik tombol anak panah ke kanan untuk memasukkan gaji ke dalam kotak **Variable(s)**. Kemudian klik **Statistics**.
- Pada bagian Distribution, klik Skewness dan Kurtosis, kemudian klik Continue. Pada kotak dialog Frequencies, klik Ok. Hasilnya akan ditampilkan pada Output1 – SPSS Output Navigator.
- 4. Simpan output dengan nama LatBab3 di Local Disk D.

Praktikum 3

Mr. Alex merupakan seorang peneliti dan sangat tertarik untuk melakukan penelitian terhadap keuntungan (profit) pada Tim Sepakbola di Liga Inggris melalui pengujian statistik deskriptif. Berikut ini merupakan keuntungan (profit) yang diterima oleh Tim Sepakbola di Liga Inggris pada musim 2021/2022 (dalam \$):

Toom	Profit
I Calli	(\$)
Arsenal	174
Aston Villa	186
Birmingham	156
Blackburn Rovers	39
Bournemouth	138
Brentford	87
Brighton	73
Burnley	137
Chelsea	83
Crystal Palace	30
Everton	168
Fulham	142
Hull City	167
Leeds United	117
Leicester City	75

Toom	Profit
I Cam	(\$)
Liverpool	35
Manchester City	164
Manchester United	72
Newcastle United	140
Norwich City	54
Nottingham Forest	45
Southampton	200
Stoke City	43
Sunderland	188
Tottenham Hotspur	32
Watford	69
West Bromwich	42
West Ham	150
Wolverhampton	181
QPR	78

Tugas Anda:

- 1. Carilah rata-rata hitung profitnya!
- 2. Hitung median dan modus profitnya!
- 3. Berapa batas profit terendah dari ³/₄ profit tertinggi?
- 4. Berapa batas profit tertinggi dari 3/10 profit terendah?
- 5. Hitung deviasi standar, variansi dan nilai jarak dari 30 profit tersebut?
- 6. Tentukan bagaimana tingkat kemencengan dan tingkat keruncingannya dan jelaskan!
- 7. Simpan data dan output dengan nama HasilPrak3 di Local Disk D!
- 8. Print hasil output dan kumpulkan!

V. Uji Validitas dan Reliabilitas

Ketepatan pengujian hipotesis sangat tergantung pada kualitas data yang dipakai dalam pengujian tersebut. Data penelitian tidak akan berguna bilamana instrumen yang digunakan untuk mengumpulkan data penelitian tidak memiliki validitas dan reliabilitas yang tinggi. Uji validitas bertujuan untuk memastikan bahwa masing-masing pertanyaan akan terklarifikasi pada variabel-variabel yang telah ditentukan. Butir-butir pertanyaan akan mempunyai validitas tinggi apabila pertanyaan-pertanyaan tersebut dapat mengukur apa yang seharusnya diukur. Uji validitas menggunakan uji homogeneitas item dengan tujuan untuk menguji kevalidan butir-butir pertanyaan untuk menguji kevalidan butir-

Prosedur pengujian yang dilakukan untuk melakukan pengujian validitas dengan uji homogeneitas item adalah sebagai berikut:

- 1. Buka file Kuesioner.Sav.
- 2. Untuk uji validitas **Prosedur**, buatlah variabel baru yang merupakan total dari kelima item dengan cara klik **Transform** di Menu Bar, pilih **Compute Variable**.

Compute Variable		
Target Variable: Total_Prosedur Type & Label Pengajaran 1 [pe	=	Num <u>e</u> ric Expression: prosedur1 + prosedur2 + prosedur3 + prosedur4 + prosedur5 Function group:
 Pengajaran 3 (pe Pengajaran 4 (pe Penguasaan Mat Penguasaan Mat Penguasaan Mat Penguasaan Mat Prosedur 1 (pros Prosedur 2 (pros Prosedur 3 (pros Prosedur 4 (pros Prosedur 5 (pros Prosedur 6 (prosedur 5 (pros) Prosedur 7 (prosedur 5 (pros) Prosedur 7 (prosedur 5 (pros) Prosedur 8 (prosedur 5 (prosedu		+ < ≥ 7 8 9 - <= ≥ 4 5 6 * = ~= 1 2 3 / & 1 0 . ** ~ () Delete → Taking youp: All Arithmetic CDF & Noncentral CDF Conversion Current Date/Time Date Arithmetic Date Creation Functions and Special Variables:
		OK Paste Reset Cancel Help

Ketikan **"total_prosedur"** pada Target Variable, kemudian masukan semua item untuk dijumlahkan pada Numeric Expression, kemudian klik **Ok**.

- 3. Klik analyze, kemudian klik Correlate, kemudian klik Bivariate.
- 4. Masukan kelima instrumen (item) tersebut beserta item **total_prosedur** (total keseluruhan kelima item) ke Variables, dengan cara mengklik semua item kemudian klik tanda panah.

- Pastikan yang tercentang (√) adalah Pearson pada Correlation Coefficients, kemudian klik Ok.
- 6. Analisa hasil output:

		Prosedur 1	Prosedur 2	Prosedur 3	Prosedur 4	Prosedur 5	Total_Prosedur
Prosedur 1	Pearson Correlation	1	037	.107	.091	035	.432**
	Sig. (2-tailed)		.771	.401	.472	.786	.000
	Ν	64	64	64	64	64	64
Prosedur 2	Pearson Correlation	037	1	.057	.214	.111	.547**
	Sig. (2-tailed)	.771		.653	.089	.383	.000
	Ν	64	64	64	64	64	64
Prosedur 3	Pearson Correlation	.107	.057	1	.128	170	.426**
	Sig. (2-tailed)	.401	.653		.313	.180	.000
	Ν	64	64	64	64	64	64
Prosedur 4	Pearson Correlation	.091	.214	.128	1	.032	.667**
	Sig. (2-tailed)	.472	.089	.313		.800	.000
	Ν	64	64	64	64	64	64
Prosedur 5	Pearson Correlation	035	.111	170	.032	1	.366**
	Sig. (2-tailed)	.786	.383	.180	.800		.003
	Ν	64	64	64	64	64	64
Total_Prosedur	Pearson Correlation	.432**	.547**	.426**	.667**	.366**	1
	Sig. (2-tailed)	.000	.000	.000	.000	.003	
	Ν	64	64	64	64	64	64

Tabel 3.1 Correlations

**. Correlation is significant at the 0.01 level (2-tailed).

Sebuah butir pertanyaan dapat mengukur sebuah konstruk, maka memiliki korelasi dengan total item pertanyaan dan bernilai positif. Dari hasil uji homogeneitas di atas menunjukkan bahwa korelasi antara setiap item pertanyaan dan total item pertanyaan adalah signifikan di bawah 0,01 dan positif. Setiap butir pertanyaan tersebut memberikan data yang valid.

Selain uji homogeneitas item, uji validitas juga menggunakan analisis faktor dengan tujuan untuk menguji kevalidan butir-butir pertanyaan dalam mengukur sebuah konstruk yang sama. Masing-masing instrumen diharapkan memiliki nilai *Kaiser's MSA (Measure of sampling adequacy)* lebih dari 0,5 sehingga data yang dikumpulkan dapat dikatakan tepat untuk analisis faktor. Nilai *eigenvalue*-nya harus lebih dari satu dan masing-masing butir pertanyaan dari setiap variabel diharapkan memiliki *factor loading* lebih dari 0,4 (*rule of the thumb*).

Prosedur pengujian yang dilakukan untuk melakukan pengujian validitas dengan analisis faktor adalah sebagai berikut:

- 1. Buka file Kuesioner2.Sav dan lihat cara penginputan variabelnya.
- 2. Klik analyze, kemudian klik Dimension Reduction, kemudian klik Factor.

Factor Analysis	×
Variables:	Descriptives
Performance 1 [p 📥	
🔗 Performance 2 (p	Extraction
Performance 3 (p	Rotation
🔗 Feature 1 [feature 🔰 🛸	0
🔗 Feature 2 [feature	Scores
Feature 3 [feature	Options
🔗 Feature 4 [feature	
Kepuasan 1 [pua Selection Variable:	
Kepuasan 2 [pua	
🖋 Kepuasan 3 (pua	
🖋 Jenis Kelamin [jk] 🥃 🛛 🗸 Value	
OK Paste Reset Cancel Help	

Untuk kasus ini akan menguji validitas untuk variabel **Kepuasan** yang tediri dari 3 instrumen dengan 5 poin skala *likert*.

- 3. Masukan ketiga instrumen (item) tersebut ke Variables, dengan cara mengklik semua item kemudian klik tanda panah.
- 4. Klik Rotation, pilih Varimax pada Method dengan cara mengklik pilihan Varimax, kemudian klik Continue.

🔚 Factor Analysis: Rotation 🛛 🔍		
Method <u>None</u> <u>Varimax</u> Direct <u>O</u> blimin <u>D</u> elta: 0	© <u>Q</u> uartimax © <u>E</u> quamax © <u>P</u> romax <u>K</u> appa 4	
Display Rotated solutio Maximum Iterations	n 📃 Loading plot(s) for Convergence: 25	
Cancel Help		

5. Klik Descriptives, pilih KMO and Bartlett's test of sphericity pada Correlation Matrix dengan cara mengklik pilihan KMO and Bartlett's test of sphericity, kemudian klik Continue.

🔚 Factor Analysis: Descriptives 🛛 🗙	
Statistics	
Correlation Matrix Coefficients Inverse Significance levels Reproduced Determinant Anti-image KMO and Bartlett's test of sphericity	
Continue Cancel Help	

- 6. Klik **Ok**.
- 7. Analisa hasil output.

Tabel 3.2 KMO and Barlett's Test

Kaiser-Meyer-Olkin Measure of Sampling Adequacy.		.716
Bartlett's Test of Sphericity	Approx. Chi-Square	110.453
	Df	3
	Sig.	.000

Tabel 3.3	

Total Variance Explained Initial Eigenvalues Extraction Sums of Squared Loadings Total % of Variance Cumulative % Total % of Variance Cumulative % Component 2.235 74.512 74.512 2.235 74.512 74.512 88.964 .434 14.451 .331 11.036 100.000

Extraction Method: Principal Component Analysis.

Component Matrix^a

	Component
	1
Kepuasan 1	.842
Kepuasan 2	.883
Kepuasan 3	.864
Extraction Me	thod: Principal
Component Anal	ysis.

a. 1 components extracted.

Berdasarkan tabel 3.2 nilai *Kaiser's MSA* sebesar 0,716 lebih besar dari 0,5 sehingga data yang dikumpulkan dapat dikatakan tepat untuk analisis faktor. Nilai *eigenvalue*-nya harus lebih dari satu, yaitu 2,235 yang membentuk 1 faktor (lihat tabel 3.3) dan *factor loading* masing-masing butir pertanyaan dari setiap variabel antara 0,842 sampai 0,883 lebih besar dari 0,4 (lihat tabel 3.4). Setiap butir pertanyaan tersebut memberikan data yang valid.

Setelah dilakukan uji validitas kemudian pertanyaan tersebut diuji dengan uji reliabilitas atau konsistensi internal yang bertujuan untuk mengetahui sejauh mana pengukuran yang telah dilakukan dalam penelitian ini dapat dipercaya atau diandalkan. Konsistensi hasil pengukuran mengindikasikan bahwa instrumen tersebut dapat bekerja dengan baik pada waktu yang berbeda dan situasi yang berbeda. Uji reliabilitas dilakukan dengan cara menghitung nilai *Cronbach Alpha* dari masing-masing instrumen dalam suatu variabel. Nilai *cut off* untuk menentukan reliabilitas suatu instrumen adalah nilai *cronbach alpha* lebih dari 0,6 (*rule of the thumb*).

Prosedur pengujian yang dilakukan untuk melakukan pengujian reliabilitas dengan nilai *cronbach alpha* adalah sebagai berikut:

- 1. Masih membuka file Kuesioner2.Sav
- 2. Klik analyze, kemudian klik Scale, kemudian klik Reliability Analysis.

ta Reliability Analysis	×
Items: Image: Performance 1 [perform1] Image: Performance 2 [perform2] Image: Performance 3 [perform3] Image: Performance 3 [perform3]	<u>Statistics</u>
Model: Alpha 🔻	
Scale label:	
OK Paste Reset Cancel Help	

- 3. Untuk uji reliabilitas **Feature**, masukan keempat instrumen yang mengukur **feature** tersebut ke **Items**, dengan cara mengklik semua instrumen kemudian klik tanda panah.
- 4. Klik Statistics, pilih Scale if item deleted pada Descriptives for dengan memberi tanda centang ($\sqrt{}$) di Scale if item deleted, kemudian klik Continue.

taistics Reliability Analysis: Statistics	×
Descriptives for tem Scale Scale if item deleted	Inter-Item Correlations Covarianc <u>e</u> s
Summaries Means Variances Covariances Correlations	ANOVA Table None E test Friedman chi-s <u>q</u> uare C Coc <u>h</u> ran chi-square
Hotelling's T-square	Tukey's test of additivity
Model: Two-Way Mixed Confidence interval: 95 %	Type: Consistency Test value: 0
Cance Cance	el Help

- 5. Klik **Ok**.
- 6. Analisa hasil output.

Hasil uji reliabilitas memberikan nilai *cronbach alpha* sebesar 0,524 lebih kecil dari 0,6, selain itu dilihat apakah korelasi setiap item dengan total memiliki korelasi yang positif dan signifikan. Hal tersebut mengkonfirmasi hasil pengujian homogeneitas item.

Lakukan hal yang sama untuk menguji Validitas dan Reliabilitas variabel lainnya.

7. Simpan output dengan nama LatKualitasData di Local Disk D.

VI. Uji Normalitas Data

Pengujian statistik seringkali membutuhkan pemenuhan asumsi normalitas. Pengertian normalitas adalah bahwa data yang diuji berdistribusi normal. Data yang berdistribusi normal adalah data yang sebaran nilai datanya memiliki nilai yang memusat di nilai rata-ratanya (frekuensi keluarnya nilai data terbanyak adalah di nilai rata-rata) dan frekuensi keluarnya nilai data semakin bernilai ekstrim. Untuk mudahnya, sebaran data dapat disebut berdistribusi normal dengan menggunakan patokan apabila mean = median = modus. Secara statistik pengujian normalitas dapat menggunakan beberapa cara:

- 1. Menganalisa *plotting* (gambar sebaran) data.
- 2. Menganalisa tingkat kemencengan dan keruncingan data. (telah dijelaskan sebelumnya).
- 3. Menganalisa dengan menggunakan uji Kolmogorov-Smirnov.

Secara khusus buku ini hanya membahas uji Kolmogorov-Smirnov. Prosedur pengujian yang harus dilakukan untuk melakukan pengujian normalitas data adalah sebagai berikut:

- 1. Buka file Deskriptif.sav dan lihat cara penginputan variabelnya.
- 2. Klik Analyze, lalu klik Descriptive Statistics, lalu klik Explore.

ta Explore		×
 ✓ Gender [gender] ✓ Bidang [bidang] ✓ Gaji Karyawan [gaji] ✓ Usia [usia] ✓ Status Karyawan [st ✓ Pengalaman Kerja [✓ Pendidikan Karyaw 	Dependent List: Factor List: Label Cases by:	Statistics Plo <u>t</u> s Options Bootstrap
Display	ato.	
	ste Reset Cancel Help	

- 3. Klik variabel **Gaji Karyawan**, Usia dan **Pengalaman Kerja**, lalu klik tanda panah untuk memasukkan variabel-variabel tersebut ke kotak dependent list.
- 4. Klik Plots, lalu klik untuk memberi tanda centang ($\sqrt{}$) untuk pilihan normality plots with tests, lalu klik continue, dan klik OK, maka SPSS akan mengeluarkan outputnya.
| Eactor levels together | Descriptive |
|--|-------------------|
| © Dependents together
© None | <u>H</u> istogram |
| Spread vs Level with Leven | e Test |
| Spread vs Level with Leven One One One One One One One One One | e Test |
| Spread vs Level with Leven
One
Power estimation | e Test |
| Spread vs Level with Leven
Non <u>e</u>
Power estimation
Transformed Power. | e Test |

5. Hasil output SPSS, pilih output Tests of Normality:

Tabel 3.6 Tests of Normality

Tests of Normality						
	Kolmogorov-Smirnov ^a				Shapiro-Wilk	
	Statistic	df	Sig.	Statistic	df	Sig.
Gaji Karyawan	.097	75	.076	.968	75	.054
Usia	.144	75	.001	.938	75	.001
Pengalaman Kerja	.134	75	.002	.941	75	.002

a. Lilliefors Significance Correction

Untuk jumlah sampel diinterpretasi hasil adalah sebagai berikut:

- 1. Apabila nilai. Sig. uji kolmogorov smirnov bernilai di atas atau sama dengan 0,05 maka data berdistribusi normal.
- Bila nilai Sig. (2-tailed) uji kolmogorov smirnov bernilai di bawah 0,05 maka data tidak berdistribusi normal.
- 3. Pengujian terhadap kelompok data ini menunjukkan bahwa nilai Sig. untuk uji kolmogorov smirnov sebesar 0,076>0,05 untuk Gaji Karyawan, 0,001<0,05 untuk Usia dan 0,002<0,05 untuk Pengalaman Kerja. Hasil tersebut dapat disimpulkan bahwa data variabel Gaji Karyawan berdistribusi normal, sedangkan data variabel Usia dan Pengalaman Kerja tidak berdistribusi normal.

VII. Uji Outlier Data

Bila data tidak berdistribusi normal maka ada beberapa cara yang dapat dicoba untuk mengusahakan agar data menjadi berdistribusi normal. Beberapa cara yang mungkin adalah:

- 1. Menambah data, karena dengan jumlah data yang semakin mendekati jumlah populasi biasanya data akan cenderung normal.
- 2. Mentransformasi data, namun **cara ini tidak dianjurkan** karena seringkali data yang ditranformasi dan kemudian digunakan lebih lanjut untuk pengujian statistik tertentu selanjutnya memerlukan interpretasi khusus untuk hasil pengujiannya.
- 3. Mengurangi data yang bersifat ekstrim (outlier).

Secara khusus buku ini hanya membahas cara ke-3, berikut prosedur yang ditempuh:

- 1. Buka file **Deskriptif.sav** di Local Disk D dan lihat cara penginputan datanya.
- 2. Klik analyze, desciptive statistics, descriptive, kemudian keluar tampilan:

Descriptives	1 2.00	23
 Gender [gender] Bidang [bidang] Gaji Karyawan [gaji] Usia [usia] Status Karyawan [st Pengalaman Kerja [Pendidikan Karyaw 	Variable(s):	Options Bootstrap
Save standardized value	s as variables	
ОК	Paste Reset Cancel Help)

- 3. Klik variabel **Usia** dan **Pengalaman Kerja** dan klik tanda panah ke kanan sehingga masuk ke kotak Variable(s).
- 4. Klik kotak Save standardized values as variables untuk memberi tanda centang ($\sqrt{}$), kemudian klik Ok.
- 5. Abaikan tampilan output yang ada dan perhatikan bahwa di sheet data awal maka kolom akan bertambah sesuai dengan banyaknya variabel yang diuji dan merupakan variabel baru yang berisi nilai z score untuk semua variabel.
- 6. Acuan: Buang kasus yang bernilai z score (pilih salah satu kriteria saja):
 - a. Di atas 3 atau di bawah -3,
 - b. Di atas 2,56 atau di bawah -2,56,

c. Di atas 1,96 atau di bawah -1,96.

Kasus data dianggap tidak outlier apabila nilai z score berada di antara nilai kriteria tersebut.

- Pada contoh tersebut maka kasus untuk Responden 22, Responden 39, dan Responden 62 dianggap outlier apabila menggunakan kriteria 1,96.
- Kasus data yang outlier tidak digunakan dalam pengujian statistik lebih lanjut. Jadi dalam contoh tersebut maka terdapat 72 data yang akan diikutsertakan dalam pengujian statistik selanjutnya.
- 9. Pakailah data lainnya untuk diuji outlier. Selamat mencoba.

VIII. Uji Normalitas Residual

Uji Normalitas Residual bertujuan untuk menguji apakah dalam model regresi, data residual berdistribusi normal atau tidak. Untuk pengujian regresi berganda mengasumsikan bahwa data residual berdistribusi normal. Ada dua cara pengujian, yaitu metode grafik dan metode nongrafik.

A. Metode Grafik

Metoda Grafik menggunakan normal probability plot, distribusi normal akan membentuk garis diagonal. Jika distribusi data residual normal, maka garis menggambarkan data sesungguhnya dan mengikuti garis diagonal. Cara pengujiannya adalah sebagai berikut:

- 1. Buka file **Regresi.sav** dan lihat cara penginputan variabelnya.
- 2. Klik **analyze**, kemudian klik **regression**, kemudian klik **linear**, masukan 'harga_saham' ke Dependent, masukan 'dpr, roe dan der' ke Independent(s).

🔚 Linear Regression		×
 kode perusahaan [k tahun [tahun] dividend payout rati return on assets [roe] debt to equity ratio [Dependent: harga saham [harga_saham] Block 1 of 1 Previous Next Independent(s): dividend payout ratio [dpr] return on assets [roe] debt to equity ratio [der] Method: Enter	Statistics Plots Save Options Bootstrap
ОК	Selection Variable: Rule Case Labels: WLS Weight: Paste Reset Cancel Help	

3. Klik Plots, kemudian masukan 'SRESID' ke Y, 'ZPRED' ke X, pilih Normal Probability Plot pada Standardized Residual Plots, kemudian klik Continue

🔚 Linear Regression: Plots >	<
DEPENDNT *ZPRED *ZRESID *DRESID *ADJPRED *SRESID *SDRESID	
Standardized Residual Plots Standardized Residual Plots Histogram Normal probability plot Continue Cancel	

4. Klik OK, pilih output gambar sebagai berikut:

Normal P-P Plot of Regression Standardized Residual

Pada gambar di atas terlihat titik-titik menyebar disekitar garis diagonal dan mengikuti arah garis diagonal. Hal ini menunjukan bawah model regresi memenuhi asumsi normalitas.

B. Metoda NonGrafik

Metoda NonGrafik menggunakan uji Kolmogorov-Smirnov, yaitu menguji apakah dalam model regresi, data residual berdistribusi normal atau tidak. Adapun cara pengujian sebagai berikut:

- 1. Buka file Regresi.sav dan lihat cara penginputan variabelnya.
- 2. Klik **analyze**, kemudian klik **regression**, kemudian klik **linear**, masukan 'harga_saham' ke Dependent, masukan 'dpr, roe dan der' ke Independent(s).
- 3. Klik Save, kemudian pilih Unstandardized pada Residuals, kemudian klik Continue

4. Klik **Ok**, kembali ke Data View, akan tampil nilai residual (res_1)

kode	tahun	dpr	roe	der	harga_saham	RES_1
amfg	2000	10 70	9 70	.97	650.00	166.52272
amfg	2001	- divid	end payout rati	⁰ 1.04	550.00	25.37499
amfg	2002	8.32	14.89	1.15	700.00	112.62256
amfg	2003	15.42	15.72	.78	850.00	239.22527
amfg	2004	19.23	14.06	.58	975.00	394. 1 6050
amfg	2005	16.31	16.83	.39	900.00	275.12175
amfg	2006	.00	17.12	.41	925.00	331.58820
arna	2000	10.00	12.07	1.00	100.00	-430.43627
arna	2001	15.00	14.06	1.50	120.00	-475.42364
arna	2002	13.33	13.50	2.02	185.00	-409.04792

5. Klik analyze, pilih Nonparametric tests, pilih Legacy Dialogs, klik 1-Sample K-S

 dividend payout rati return on assets [roe] debt to equity ratio [Test Variable List:	E <u>x</u> act Options
🛷 harga saham (harg		
Test Distribution		
Poisson Exponential	Reset Cancel Help	

6. Klik **Ok**, akan tampil output sebagai berikut:

One-Sample Ronnogorov-Sinn nov Test				
			Unstandardiz	
			ed Residual	
Ν			112	
Normal Param	eters ^{a,b}	Mean	.0000000	
		Std. Deviation	229.3086919	
Most	Extreme	Absolute	.072	
Differences		Positive	.072	
		Negative	049	
Test Statistic			.072	
Asymp. Sig. (2	2-tailed)		.200	

One-Sample Kolmogorov-Smirnov Test

a. Test distribution is Normal.

b. Calculated from data.

Apabila nilai Asymp. Sig. (2-tailed) uji kolmogorov smirnov bernilai **di atas atau sama dengan** 0,05 maka **data residual berdistribusi normal**. Apabila nilai Asymp. Sig. (2-tailed) uji kolmogorov smirnov bernilai di bawah 0,05 maka **data residual tidak berdistribusi normal**. Dari hasil pengujian One-Sample Kolmogorov-Smirnov Test menunjukan bahwa data residual dalam model regresi, terdistribusi normal, dengan nilai Kolmogorov-Smirnov Z dan nilai Asymp. Sig (2-tailed) 0,200 lebih besar sama dengan 0,05.

IX. Uji Outlier Residual

Bila dalam model regresi data residual tidak berdistribusi normal, maka ada beberapa cara yang dapat dicoba untuk mengusahakan agar data menjadi berdistribusi normal. Salah satu caranya adalah mengurangi data yang bersifat ekstrim (outlier). Berikut prosedur yang ditempuh:

- 1. Buka file **Regresi.sav** dan lihat cara penginputan variabelnya.
- Klik analyze, kemudian klik regression, kemudian klik linear, masukan 'harga_saham' ke Dependent, masukan 'dpr, roe dan der' ke Independent(s).
- 3. Klik Save, kemudian pilih Unstandardized pada Residuals, kemudian klik Continue

🔚 Linear Regression: Save	;	×		
Predicted Values Unstandardized Standar_dized Adjusted S.E. of mean predictions	Residuals Unstandardized Standardized Studentized Deleted Studentized deleted			
Distances Mahalanobis Cook's Leverage values Prediction Intervals Mean Individual Confidence Interval: 95 %	Influence Statistics DfBeta(s) Standardized DfBeta(s) DfFit Standardized DfFit Covariance ratio			
Coefficient statistics Create operficient statistics Create a new dataset Dataset name: Write a new data file File				
Export model information to XML file				

4. Klik **Ok**, kembali ke Data View, akan tampil nilai residual (res_1)

kode	tahun	dpr	roe	der	harga_saham	RES_1
amfg	2000	10 70	9 70	.97	650.00	166.52272
amfg	2001	- divid	end payout rati	⁰ 1.04	550.00	25.37499
amfg	2002	8.32	14.89	1.15	700.00	112.62256
amfg	2003	15.42	15.72	.78	850.00	239.22527
amfg	2004	19.23	14.06	.58	975.00	394.16050
amfg	2005	16.31	16.83	.39	900.00	275.12175
amfg	2006	.00	17.12	.41	925.00	331.58820
arna	2000	10.00	12.07	1.00	100.00	-430.43627
arna	2001	15.00	14.06	1.50	120.00	-475.42364
arna	2002	13.33	13.50	2.02	185.00	-409.04792

5. Klik analyze, desciptive statistics, descriptive, kemudian muncul tampilan:

ta 🛛	Descriptives	×		
 dividend payout rati return on equity [roe] debt to equity ratio [harga saham [harg 	Variable(s):	<u>Options</u> Sty <u>l</u> e <u>B</u> ootstrap		
Save standardized values as variables				
ОК	2aste <u>R</u> eset Cancel Hel	p		

- 6. Klik **Unstandardized Residual** dan klik tanda panah ke kanan sehingga masuk ke kotak Variable(s).
- 7. Klik kotak Save standardized values as variables untuk memberi tanda centang ($\sqrt{}$), kemudian klik Ok.
- 8. Abaikan tampilan output yang ada dan perhatikan bahwa di sheet data awal maka kolom akan bertambah dan merupakan variabel baru yang berisi nilai z score untuk nilai residual.
- 9. Acuan: Buang kasus yang bernilai z score (pilih salah satu kriteria saja):
 - a. Di atas 3 atau di bawah -3,
 - b. Di atas 2,56 atau di bawah -2,56,
 - c. Di atas 1,96 atau di bawah -1,96.

Kasus data dianggap tidak outlier apabila nilai z score berada di antara nilai kriteria tersebut.

- 10. Pada contoh tersebut maka kode perusahaan arna tahun 2001 dan sobi tahun 2006 dianggap outlier apabila menggunakan kriteria 1,96.
- 11. Kasus data yang outlier tidak digunakan dalam pengujian statistik lebih lanjut. Jadi dalam contoh tersebut maka terdapat 110 data yang akan diikutsertakan dalam pengujian normalitas data residual kembali.
- 12. Apabila setelah uji outlier, hasil uji normalitas menunjukkan data residual tidak terdistribusi normal, maka pengujian statistik selanjutnya menggunakan data sebelum outlier. Selamat mencoba.

BAB IV

UJI BEDA (ANTAR) KELOMPOK DAN CROSSTAB

I. Uji Beda

Uji beda (antar) kelompok dapat dibedakan dalam beberapa jenis (Sekaran & Bougie 2020, Hair et al. 2018), yaitu:

	Tipe Pengujian Statistik			
Jumlah Kelompok Data	Parametrik	Non Parametrik		
1 kelompok	One sample t test	Kolmogorov Smirnov One		
		sample t test; Chi Square test		
2 kelompok yang independen.	Independent sample t test	Mann Whitney U test		
2 kelompok saling berhubungan	Paired sample t test	Wilcoxon test dan Sign test		
Lebih dari 2 kelompok	One Way Anova (Analysis	Kruskal Wallis H test		
independen	of Variance)			
Lebih dari 2 kelompok dengan	Manova (Multivariate			
lebih dari 1 variabel yang	Analysis of Variance)			
dibedakan				

Tabel 4.1

Tipe Pengujian Statistik

Pengujian statistik parametrik dan statistik non parametrik dibedakan dalam hal:

- 1. Pengujian **statistik parametrik** digunakan bila distribusi data (dari kelompok) yang diuji berdistribusi normal (**dan** data berskala interval atau rasio).
- 2. Pengujian **statistik non parametrik** digunakan bila distribusi data (dari kelompok) yang diuji tidak berdistribusi normal (**atau** apabila bentuk data berskala nominal atau ordinal).

Pengujian beda antar kelompok dapat diterangkan dengan contoh berikut ini:

 Uji beda 1 kelompok, bila kita hendak membandingkan apakah terdapat perbedaan antara nilai yang mewakili kelompok dengan satu angka pembanding. Sebagai contoh: Kita hendak membandingkan, apakah suatu kelompok data (misalnya mahasiswa S1 Akuntansi angkatan 2005) mempunyai rata-rata IPK sebesar 3,9 (satu angka pembanding) atau tidak.

- 2. Uji beda 2 kelompok independen, bila kita hendak membandingkan 2 kelompok yang anggota kelompoknya tidak bergantung satu dengan yang lainnya. Sebagai contoh: Kita hendak membandingkan apakah IPK dari (kelompok data) mahasiswa S1 Akuntansi sama baiknya dengan IPK dari (kelompok data) mahasiswa S1 Manajemen.
- 3. Uji beda 2 kelompok yang berhubungan, bila kita hendak membandingkan 2 kelompok yang anggota kelompoknya sama namun hendak dibedakan karena adanya perbedaan perlakuan (*treatment*) tertentu. Sebagai contoh: Kita hendak membandingkan apakah sebelum adanya *training* membaca cepat dengan sesudah adanya *training* membaca cepat mahasiswa S1 Akuntansi mendapatkan IPK yang berbeda atau tidak. (lihat yang dibedakan disini adalah kelompok mahasiswa S1 akuntansi sebelum mendapatkan *training* dengan kelompok mahasiswa S1 akuntansi yang sama, namun telah mendapatkan *training*).
- 4. Uji beda lebih dari 2 kelompok yang independen, pemahaman konsep kelompok sama dengan uji beda 2 kelompok hanya saja kelompok independen yang diuji lebih dari 2 kelompok independen.

A. Independent Sample T Test

Latihan Independent Sample T Test

Sebuah *agency* penyewaan apartemen berpendapat bahwa rata-rata harga sewa apartemen dua kamar adalah sama untuk Tower A dan Tower B. Berikut hasil survei harga sewa apartemen masing-masing 20 setiap tower. (Dengan menggunakan $\alpha = 5\%$, ujilah pendapat tersebut)

Tower A (\$/bulan)	Tower B (\$/bulan)
500	555
300	500
450	565
350	400
600	385
450	500
345	575
350	580
355	655
455	450
400	340
325	350
475	500

Harga Sewa Apartemen 2 Kamar

Tabel 4.2

465	595
700	655
600	675
550	755
395	400
665	450
455	600

Langkah-langkah pengujian:

- 1. Inputkan data di atas, untuk nilai pada variabel **harga_sewa** dan **tower** untuk Tower A diberi nilai 1 dan Tower B diberi nilai 0 pada variabel **tower**
- 2. Buka variable view untuk variabel tower, kemudian klik field values

Name	Туре	Width	Decimals	Label	Values	Missing	Columns
harga_sewa	Numeric	8	0		None	None	8
tower	Numeric	8	0		{0, Tower B}	None	8

3. Ketikan angka 1 pada value dan **Tower A** pada value label, klik Add. Ketikan angka 0 pada value dan **Tower B** pada value label, klik Add, kemudian tekan OK.

Value:	Spelling.
Label:	
Add 0 = "Tower B" 1 = "Tower A"	
Remove	

- 4. Pada bagian Measure, untuk variable harga_sewa pilih *scale* dan variable tower pilih *nominal*.
- 5. Klik Analyze di Menu Bar, pilih Compare Means, pilih Independent Samples T Test

ta	Independent-Samples T T	est		23
	∲ harga_sewa € tower	•	<u>T</u> est Variable(s):	Options Bootstrap
		•	Grouping Variable:	
	OK	Paste	Reset Cancel Help	

- 6. Masukkan variable **harga_sewa** ke Test Variables dengan cara klik variabel **harga_sewa**, klik tanda panah ke kanan Test Variables kemudian klik variabel **tower** dan klik tanda panah ke kanan grouping variables.
- 7. Definisikan variabel tersebut dengan cara mengklik *define groups*, kemudian masukkan angka 1 di group 1 dan angka 0 di group 2, kemudian klik continue.

- 8. Klik Ok
- 9. Analisa hasil output

Tabel 4.3

Group Statistics

	tower	N	Mean	Std. Deviation	Std. Error Mean
harga_sewa	Tower A	20	459.25	114.504	25.604
	Tower B	20	524.25	116.204	25.984

Tabel 4.4 Independent Samples Test

Lev for I V		Leve for Eo Va	ne's Test quality of riances			t-test	for Equality	of Means		
		F	Sig.	t	df	Sig. (2-tailed)	Mean Differenc e	Std. Error Inte Difference D		onfidence al of the Ference
							-		Lower	Upper
harga	Equal variances assumed	.174	.679	-1.782	38	.083	-65.000	36.479	-138.848	8.848
_sewa	Equal variances not assumed			-1.782	37.992	.083	-65.000	36.479	-138.849	8.849

Nilai F sebesar 0,174 dengan sig. 0,679 lebih besar dari 0,05 menunjukkan bahwa variansi harga sewa antara tower A dan tower B adalah sama (lihat tabel 4.4). Berdasarkan hasil uji F tersebut maka nilai t yang dilihat pada baris pertama (*Equal variances assumed*), yaitu nilai t sebesar -1,782 dengan sig. (2-tailed) 0,083 lebih besar dari 0,05 yang artinya bahwa tidak ada terdapat perbedaan harga sewa antara apartemen Tower A dengan Tower B.

10. Simpan output dengan nama LatIndependent di Local Disk D.

B. Paired Sample T Test

Latihan Paired Sample T Test

The Coven Computer Company employs 500 salespeople. In an attempt to reduce the amount of time needed to close a sale, the company has produced a multimedia package to be used in sales presentations. So far, only 15 salespeople have requested and used the package. When each of these salespeople made the request to use the package, he or she was asked to estimate the amount of time usually needed in a presentation to make a sale. After each one used the package after 2 months, he or she was again asked to estimate how much time it took to make a sale. The data follow (in minutes).

Salesperson	Time before Package	Time after Package
Α	23	17
В	45	43
С	36	36
D	42	37
Ε	25	20
F	33	39
G	28	31

Tabel 4.5

Н	25	21
Ι	35	27
J	30	40
K	40	23
L	27	45
Μ	21	15
Ν	31	20
0	39	30

(Modified from: Sanders & Smidt, 2000)

Use the Paired Sample t-test at the 0.01 level to see if there's a reduction in the time needed to close a sale when the multimedia package is used.

- Inputkan data di atas, untuk waktu sebelum menggunakan *multimedia package* pada variabel time_before dan waktu sesudah menggunakan *multimedia package* pada variabel time_after
- 2. Klik **Analyze** di Menu Bar, pilih **Compare Means**, pilih **paired sample t test.** (diasumsikan data berdistribusi normal)
- Klik variabel time_before dan variabel time_after kemudian masukkan kedua variabel tersebut ke Paired Variables dengan cara klik tanda panah ke kanan ke Paired Variables. Klik Ok

		Paired	Variables:		8	Options
🔗 time_before		Pair	Variable1	Variable2		
🔗 time_after		1	🖉 [time_b	/ [time_af		Bootstra
		2				
					2	
	*				¥	
					++	
		1.1				

4. Analisa hasil output

Tabel 4.6

Paired Samples Statistics

		Mean	N	Std. Deviation	Std. Error Mean
Pair 1	time_before	32.00	15	7.339	1.895
	time_after	29.60	15	9.970	2.574

Tabel 4.7

Paired Samples Correlations

		N	Correlation	Sig.
Pair 1	time_before & time_after	15	.520	.047

Tabel 4.8

Paired Samples Test

	Paired Differences							
				95% Cor				
			Std.	Interval	of the			
		Std.	Error	Differ	ence			Sig. (2-
	Mean	Deviation	Mean	Lower	Upper	t	df	tailed)
Pair 1 time_before - time_after	2.400	8.781	2.267	-2.463	7.263	1.058	14	.308

Rata-rata waktu sesudah menggunakan *multimedia package* lebih kecil dari rata-rata waktu sesudah menggunakan *multimedia package*, yaitu 29,60 < 32,00 (lihat tabel 4.6). Korelasi rata-rata waktu sesudah menggunakan *multimedia package* dan rata-rata waktu sesudah menggunakan *multimedia package* adalah positif tetapi tidak signifikan di atas 0,01 (lihat tabel 4.7). Nilai t sebesar 1,058 dengan sig (2-tailed) sebesar 0,308 di atas 0,01 (lihat tabel 4.8). Hasil pengujian ini menunjukkan bahwa tidak terdapat perbedaan waktu yang dibutuhkan untuk melakukan presentasi penjualan sebelum dan sesudah menggunakan *multimedia package*.

5. Simpan output dengan nama LatPaired di local disk D.

C. One Way Anova

Dalam dunia aplikasi bisnis analisa statistik, jumlah situasi yang dibutuhkan untuk perbandingan lebih dari 2 tahap. Sebagai contoh seorang manager ingin mengetahui jika salah satu dari lima jenis proses yang berbeda dari proses perakitan menghasilkan produktivitas yang lebih tinggi per jamnya. Untuk itu digunakan analisis varians.

Seandainya ingin membandingkan beberapa rata-rata dari K populasi, dengan asumsi mempunyai varians yang sama. Sampel diambil secara acak dari $n_1, n_2, ..., n_k$ observasi diambil dari populasi. Pengujian hipotesis yang dilakukan adalah ada tidaknya perbedaan rata-rata antara k sampel dari k populasi.

Latihan One Way Anova

A large accounting firm wants to see if the accuracy of its employees is related to the school from which the employees graduated. Eleven accountants representing 4 schools were randomly selected, and the number of errors commited by each accountant over a 2-week period was recorded as follows.

School A	School B	School C	School D
14	17	19	23
16	16	20	12
17	18	22	21
13	15	21	10
22	16	18	9
9	12	19	15
10	14	15	16
8	18	14	11
12	20	7	17
21	16	12	20
16	10	10	5

(Modified from: Sanders & Smidt, 2000)

Conduct an ANOVA test at the 0.05 level. Is there a significant difference in accuracy?

- Inputkan data di atas, untuk jumlah kesalahan pada variabel kesalahan dan asal sekolah untuk School A diberi nilai 1, School B diberi nilai 2 dan School C diberi nilai 3 dan School D diberi nilai 4 pada variabel sekolah
- 2. Buka variable view untuk variabel sekolah, kemudian klik field values

Name	Туре	Width	Decimals	Label	Values	Missing
kesalahan	Numeric	8	0		None	None
sekolah	Numeric	8	0		{1, School	None

3. Ketikan angka 1 pada value dan School A pada value label, klik Add. Ketikan angka 2 pada value dan School B pada value label, klik Add. Ketikan angka 3 pada value dan School C pada value label, klik Add. Ketikan angka 4 pada value dan School D pada value label, klik Add kemudian tekan OK.

Val <u>u</u> e:		Spelling
Label:		
	1 = "School A"	
Add	2 = "School B"	
Change	4 = "School D"	
Remove		

- 4. Pada bagian Measure, untuk variabel kesalahan pilih *scale* dan variabel sekolah pilih *ordinal*.
- 5. Klik Analyze di Menu Bar, pilih Compare Means, pilih One Way Anova
- 6. Masukkan variabel **kesalahan** ke Dependent List dengan cara klik variabel **kesalahan**, klik tanda panah ke kanan Dependent List
- 7. Masukkan variable **sekolah** Factor dengan cara klik variabel **sekolah**, klik tanda panah ke kanan

🔚 One-Way ANOVA			<u> </u>
		ependent List: ∲ kesalahan	Co <u>n</u> trasts Post <u>H</u> oc Options <u>B</u> ootstrap
ОК [easte Re	ctor: sekolah set Cancel	Help

8. Pada Post Hoc... berilah tanda centang ($\sqrt{}$) pada Bonferroni dan Tukey kemudian klik Continue.

🝓 One-Way ANOVA: Post Hoc Multiple Comparisons 🛛 🕹 🗙						
r Equal Variances As	sumed					
LSD	🔲 <u>S</u> -N-К	Waller-Duncan				
Bonferroni	√ <u>T</u> ukey	Type I/Type II Error Ratio: 100				
🔲 S <u>i</u> dak	🔲 Tu <u>k</u> ey's-b	Dunn <u>e</u> tt				
Scheffe	Duncan	Control Category : Last	-			
📃 <u>R</u> -E-G-W F	🔲 <u>H</u> ochberg's GT2	2 Test	5			
🔲 R-E-G-W <u>Q</u>	🔲 <u>G</u> abriel	O <u>2</u> -sided O < Control O > Control				
Equal Variances No	ot Assumed					
🔲 Ta <u>m</u> hane's T2	🔲 Dunnett's T <u>3</u>	🔲 G <u>a</u> mes-Howell 📄 D <u>u</u> nnett's C				
Significance level: 0.05						
Cancel Help						

 Pada Options berilah tanda centang (√) pada Descriptive dan Homogeneity of variance test kemudian klik Continue. Catatan Homogenity of variance test untuk menguji asumsi kesamaan varians.

🔄 One-Way ANOVA: Options 🛛 🗙 🗙					
Statistics					
☑ Descriptive					
Eixed and random effects					
Homogeneity of variance test					
Brown-Forsythe					
Welch					
Means plot					
Missing Values					
Exclude cases analysis by analysis					
\bigcirc Exclude cases listwise					
Continue Cancel Help					

- 10. Klik **Ok**
- 11. Analisa hasil output.

Tabel 4.9 Descriptives

kesalahan								
					95% Confidence			
	Ν	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
School A	11	14.36	4.589	1.383	11.28	17.45	8	22
School B	11	15.64	2.838	.856	13.73	17.54	10	20
School C	11	16.09	4.867	1.468	12.82	19.36	7	22
School D	11	14.45	5.592	1.686	10.70	18.21	5	23
Total	44	15.14	4.486	.676	13.77	16.50	5	23

Tabel 4.10

Test of Homogeneity of Variances

kesalahan

Levene Statistic	df1	df2	Sig.
2.233	3	40	.099

Tabel 4.11

ANOVA

kesalahan

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	24.455	3	8.152	.388	.762
Within Groups	840.727	40	21.018		
Total	865.182	43			

Tabel 4.12

Multiple Comparisons

Dependent Variable:kesalahan							
	-	-	Mean Difference			95% Confide	ence Interval
	(I) sekolah	(J) sekolah	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Tukey HSD	School A	School B	-1.273	1.955	.915	-6.51	3.97
		School C	-1.727	1.955	.813	-6.97	3.51
		School D	091	1.955	1.000	-5.33	5.15
	School B	School A	1.273	1.955	.915	-3.97	6.51
		School C	455	1.955	.995	-5.69	4.79
		School D	1.182	1.955	.930	-4.06	6.42
	School C	School A	1.727	1.955	.813	-3.51	6.97
		School B	.455	1.955	.995	-4.79	5.69
		School D	1.636	1.955	.836	-3.60	6.88
	School D	School A	.091	1.955	1.000	-5.15	5.33
		School B	-1.182	1.955	.930	-6.42	4.06
		School C	-1.636	1.955	.836	-6.88	3.60
Bonferroni	School A	School B	-1.273	1.955	1.000	-6.70	4.15
		School C	-1.727	1.955	1.000	-7.15	3.70
		School D	091	1.955	1.000	-5.52	5.34
	School B	School A	1.273	1.955	1.000	-4.15	6.70
		School C	455	1.955	1.000	-5.88	4.97
		School D	1.182	1.955	1.000	-4.24	6.61
	School C	School A	1.727	1.955	1.000	-3.70	7.15
		School B	.455	1.955	1.000	-4.97	5.88
		School D	1.636	1.955	1.000	-3.79	7.06
	School D	School A	.091	1.955	1.000	-5.34	5.52
		School B	-1.182	1.955	1.000	-6.61	4.24
		School C	-1.636	1.955	1.000	-7.06	3.79

Rata-rata kesalahan tertinggi pada School C, yaitu 16,09, sedangkan rata-rata kesalahan pada School A, B dan D berturut-turut adalah 14,36, 15,64 dan 14,45 (lihat tabel 4.10). Sebelum dilakukan uji beda one way ANOVA, maka diuji dahulu apakah terdapat kesamaan variansi School A, School B, School C dan School D yang dilihat dari tabel 4.11, nilai Levene Statistic 2,233 dengan sig. 0,099 di atas 0,05, hasil tersebut menunjukkan bahwa adanya kesamaan variansi. Walaupun hasil uji kesamaan variansi tidak terpenuhi maka uji beda one way ANOVA dapat tetap dijalankan.

Hasil uji beda one way ANOVA memiliki nilai F sebesar 0,388 dengan sig. 0,762 di atas 0,05 (lihat tabel 4.12). Hasil ini menunjukkan bahwa tidak terdapat perbedaan rata-rata kesalahan School A, School B, School C dan School D. Lebih lanjut apabila hasil uji one way ANOVA memiliki nilai sig. di bawah 0,05 yang artinya terdapat perbedaan rata-rata kesalahan School A, School B, School C dan School D, maka untuk mengetahui rata-rata kesalahan sekolah manakah yang berbeda maka dilakukan uji Tukey HSD dan Bonferroni, dengan cara membandingkan nilai sig. dengan alpha 0,05.

12. Simpan output dengan nama LatAnova di Local Disk D.

D. Multivariate Analysis of Variance (MANOVA)

Multivariate Analysis of Variance (Manova) adalah analisis yang mirip dengan Anova, bedanya terletak pada banyaknya variabel tak bebas Y. Jika pada Anova hanya ada satu Dependent Variable Y(Y₁), maka pada MANOVA justru mensyaratkan adanya lebih dari satu Dependent Variable, katakan ada k (Y₁,Y₂,...Y_k). Misalnya tersedia data seperti di bawah ini:

- 1. Buka file Manova.Sav di Local Disk D.
- 2. Perhatikan Data View cara penginputan data dan Variable View untuk pendefinisian variabel.

Dari data tersebut akan dilihat, apakah tingkat informasi Sistem Akuntansi Managemen (*Sophisticated* dan *less Sophisticated*) dan tingkat kompetisi pasar (tinggi dan rendah) akan mempengaruhi kinerja dan kepuasan kerja seorang manager? Untuk kasus ini variabel kinerja dan kepuasan kerja merupakan variabel dependen yang berskala rasio. Sedangkan informasi Sistem Akuntansi Managemen dan Kompetisi Pasar merupakan variable independen yang berskala nominal.

- 3. Dari menu Analyze, pilih submenu General Linier Model, kemudian pilih Multivariate....
- 4. Masukkan variabel Kinerja (ykur) dan Kepuasan (ykkr) ke bagian Dependent Variables. Masukkan varibel SAM (xsamd) dan Kompetisi (xkpd) ke bagian Fixed Factor(s). Catatan Fixed Factor(s) sekemudian berisi data berskala nominal dan ordinal.

🕼 Multivariate			×
	*	Dependent Variables: Kinerja [ykur] Kepuasan [ykkr]	Model Co <u>n</u> trasts Plo <u>t</u> s
		Eixed Factor(s):	Post <u>H</u> oc
		SAM [xsamd]	EM Means
		Kompetisi (xkpaj	<u>S</u> ave
		<u>C</u> ovariate(s):	Options
			<u>B</u> ootstrap
	•		
		WI O Weight	
	•	weight.	
ОК	<u>P</u> aste	Reset Cancel Help	

5. Pada Options berilah tanda centang $(\sqrt{)}$ pada Descriptive dan Homogeneity of variance test kemudian klik Continue.

🕼 Multivariate: Options	×				
Display					
Descriptive statistics	Transformation matrix				
Estimates of effect size	Homogeneity tests				
Observed power	Spread vs. level plot				
Parameter estimates	🕅 <u>R</u> esidual plot				
SCP matrices	Lack of fit				
Residual SSCP matrix	General estimable function				
Significance level: .05 Confidence intervals are 95.0 %					
Cancel Help					

6. Pada Plots... masukan xsamd pada Horizontal Axis dan xkpd pada Separate Lines kemudian klik Add dan Continue.

ি Multivariate: Profile Plots 🛛 🗙
Eactors: Horizontal Axis: xsamd xkpd Separate Lines: Xkpd Segarate Plots:
Plots: Add Change Remove
⊂ Chart Type:
Error Bars Include Error bars © Confidence Interval (95.0%) © Standard Error Multiplier: 2
Include reference line for <u>a</u> rand mean Y axis starts at 0
Continue Cancel Help

7. Klik **Ok**

8. Analisa hasil output.

Tabel 4.13

	SAM	Kompetisi	Mean	Std. Deviation	N
Kinerja	less	Rendah	4.7059	.40490	17
	sophisticated	Tinggi	4.5469	.45776	8
		Total	4.6550	.41970	25
	Sophisticated	Rendah	4.6964	.41368	7
		Tinggi	5.2500	.54048	24
		Total	5.1250	.55995	31
	Total	Rendah	4.7031	.39839	24
		Tinggi	5.0742	.59978	32
		Total	4.9152	.55088	56
Kepuasan	less	Rendah	4.8824	.48507	17
	sophisticated	Tinggi	4.2500	.65465	8
		Total	4.6800	.61033	25
	Sophisticated	Rendah	4.7143	.69864	7
		Tinggi	5.4583	.84592	24
		Total	5.2903	.86385	31
	Total	Rendah	4.8333	.54507	24
		Tinggi	5.1563	.95409	32
		Total	5.0179	.81444	56

Descriptive Statistics

Nilai rata-rata kinerja dan kepuasan kerja manajer tertinggi ada pada saat tingkat informasi Sistem Akuntansi Manajemen (SAM) yang sophisticated dan tingkat kompetisi pasar yang tinggi, yaitu 5,25 dan 5,46 (lihat tabel 4.14, gambar 4.1 dan gambar 4.2). Hal ini menunjukkan bahwa pada saat manajer menggunakan informasi SAM yang sophisticated dan dihadapkan pada kondisi tingkat kompetisi pasar yang tinggi, maka informasi tersebut menjadi lebih berguna atau tepat sehingga kinerja dan kepuasan kerja mereka akan meningkat.

Tabel 4.14

Levene's Test of Equality of Error Variances(a)

	F	df1	df2	Sig.
Kinerja	1.656	3	52	.188
Kepuasan	1.708	3	52	.177

Tests the null hypothesis that the error variance of the dependent variable is equal across groups.

a Design: Intercept+XSAMD+XKPD+XSAMD * XKPD

Tabel 4.15

Tests of Between-Subjects Effects

		Type III Sum				
Source	Dependent Variable	of Squares	Df	Mean Square	F	Sig.
Corrected Model	Kinerja	4.855(a)	3	1.618	7.111	.000
	Kepuasan	10.331(b)	3	3.444	6.847	.001
Intercept	Kinerja	1000.710	1	1000.710	4396.682	.000
	Kepuasan	1011.768	1	1011.768	2011.804	.000
XSAMD	Kinerja	1.306	1	1.306	5.739	.020
	Kepuasan	2.938	1	2.938	5.842	.019
XKPD	Kinerja	.423	1	.423	1.857	.179
	Kepuasan	.034	1	.034	.067	.796
XSAMD * XKPD	Kinerja	1.379	1	1.379	6.057	.017
	Kepuasan	5.143	1	5.143	10.227	.002
Error	Kinerja	11.835	52	.228		
	Kepuasan	26.152	52	.503		
Total	Kinerja	1369.594	56			
	Kepuasan	1446.500	56			
Corrected Total	Kinerja	16.691	55			
	Kepuasan	36.482	55			

a R Squared = .291 (Adjusted R Squared = .250)

b R Squared = .283 (Adjusted R Squared = .242)

Sebelum dilakukan uji beda, maka diuji dahulu apakah terdapat kesamaan variansi antar kelompok yang dilihat dari tabel 4.15, untuk kinerja nilai Levene Statistic 1.656 dengan sig. 0,188 di atas 0,05, untuk kepuasan kerja nilai Levene Statistic 1.708 dengan sig. 0,177 di atas 0,05 hasil tersebut menunjukkan bahwa adanya kesamaan variansi. Walaupun hasil uji kesamaan variansi tidak terpenuhi maka uji beda MANOVA dapat tetap dijalankan. Hasil uji beda MANOVA untuk kinerja memiliki nilai F sebesar 6.057 dengan sig. 0,017 di bawah 0,05, sedangkan kepuasan kerja memiliki nilai F sebesar 10.227 dengan sig. 0,002 di bawah 0,01 (lihat tabel 4.16). Hasil ini menunjukkan bahwa terdapat perbedaan kinerja manager dilihat dari informasi SAM dan tingkat kompetisi pasar. Begitu juga dengan kepuasan kerja, terdapat perbedaan kepuasan kerja manager dilihat dari informasi SAM dan tingkat kompetisi pasar.

Gambar 4.1 Kinerja

Gambar 4.2 Kepuasan Kerja

9. Simpan output dengan nama LatManova di Local Disk D.

II. Crosstab dan CHI Square

Crosstab adalah sebuah tabel silang yang terdiri atas satu baris atau lebih dan satu kolom atau lebih. Fasilitas crosstab pada SPSS bisa sekedar menampilkan kaitan antara dua atau lebih variabel, sampai dengan menghitung apakah ada hubungan antara baris dengan kolom.

Ciri penggunaan crosstab adalah data input yang berskala nominal atau ordinal, sebagai contoh tabulasi antara jenis kelamin seseorang dengan tingkat pendidikan orang tersebut. Alat statistik yang sering digunakan untuk mengukur asosiasi pada sebuah crosstab adalah chi-square.

Latihan Crosstab

Buka file **Deskriptif.Sav** di Local Disc D, untuk melihat hubungan antara jenis kelamin dengan tingkat pendidikan, ikuti langkah berikut:

- 1. Klik Analyze di Menu Bar, pilih Descriptive Statistics, pilih Crosstab
- 2. Masukkan variabel **gender** ke Row(s) dengan klik variabel **gender**, klik tanda panah ke kanan Row(s)

3. Masukkan variabel **pendidikan** ke Column(s) dengan cara klik variabel **pendidikan**, klik tanda panah ke kanan Column(s)

ta Crosstabs		×
 ✔ Bidang [bidang] ✔ Gaji Karyawan [gaji] ✔ Usia [usia] ✔ Status Karyawan [status] ✔ Pengalaman Kerja [peng 	Row(s): Gender [gender] Column(s): Pendidikan Karyawan [Layer 1 of 1 Previous Next	Exact Statistics Cells Eormat Style Bootstr <u>a</u> p
 Display clustered <u>b</u>ar charts Suppress tables OK 	Disp <u>l</u> ay layer variables in table layer <u>Reset</u> Cancel Help	S

- 4. Klik Statistics, aktifkan Chi-square, klik Continue, kemudian klik Ok
- 5. Analisa hasil output.

Selanjutnya, ada cara kedua untuk melakukan uji chi-square dimulai dengan input data berdasarkan dari tabel silang atau crosstabulation. Caranya, yaitu:

- 1. Buat file SPSS baru. Buat 3 variabel : Gender, Pendidikan, dan Frekuensi di variable view.
- 2. Input data sesuai yang ada di tabel crosstabulation ke dalam data view.

	💑 Gender	Pendidika n	🔗 Frekuensi	var
1	0	1	5	
2	0	2	14	
3	0	3	14	
4	1	1	5	
5	1	2	16	
6	1	3	21	
7				
8				

 Pilih Data di Menu Bar, pilih Weight Cases. Kemudian akan muncul kotak dialog Weight Cases. 4. Klik Weight Cases By, lalu pindakan variabel Frekuensi ke Frequency Variable, klik Ok.

🕼 Weight Cases	×
🗞 Gender <mark>1</mark> Pendidikan Karyaw	 Do not weight cases Weight cases by Frequency Variable: Frekuensi
	Current Status: Do not weight cases
OK Paste	Reset Cancel Help

- 5. Klik Analyze di Menu Bar, pilih Descriptive Statistics, pilih Crosstab
- 6. Masukkan variabel **gender** ke Row(s) dengan klik variabel **gender**, klik tanda panah ke kanan Row(s)
- 7. Masukkan variabel **pendidikan** ke Column(s) dengan cara klik variabel **pendidikan**, klik tanda panah ke kanan Column(s)
- 8. Klik Statistics, aktifkan Chi-square, klik Continue, kemudian klik Ok
- 9. Analisa hasil output.

Tabel 4.16

Case Processing Summary

	Cases					
	Va	lid	Mis	sing	То	otal
	N	Percent	N	Percent	N	Percent
Gender * Pendidikan Karyawan	75	100.0%	0	.0%	75	100.0%

Tabel 4.17

		Pen	Total		
		SMU	Akademi	Sarjana	Total
Gender	Wanita	5	14	14	33
Genuer	Pria	5	16	21	42
Total		10	30	35	75

Gender * Pendidikan Karyawan Crosstabulation

Terlihat tabel silang yang memuat hubungan antara kedua variabel. Pada baris 1 kolom 1, terdapat angka 5, hal ini berarti ada 5 responden wanita yang memiliki tingkat pendidikan SMU. Demikian selanjutnya untuk data lainnya.

Tabel 4.18 Chi-Square Tests

	Value	df	Asymp. Sig. (2- sided)
Pearson Chi-Square	.460ª	2	.795
Likelihood Ratio	.460	2	.794
Linear-by-Linear Association	.437	1	.509
N of Valid Cases	75		

a. 1 cells (16.7%) have expected count less than 5. The minimum expected count is 4.40.

Uji Chi-square untuk mengamati ada tidaknya hubungan antara dua variabel (baris dan kolom). Dari tabel di atas terlihat bahwa Asymp. Sig (2-sided) pada Pearson Chi-square adalah 0,795. Nilai tersebut lebih besar dari $\alpha = 0,05$ sehingga dapat disimpulkan bahwa Ho diterima yang artinya tidak terdapat hubungan antara gender dengan tingkat pendidikan.

Lakukan prosedur yang sama untuk melihat hubungan antara gender dengan bidang.

10. Simpan output dengan nama LatCrosstab di Local Disk D.

Praktikum 4

A. Kapolda DKI Jakarta dan Kapolda Jawa Barat ingin menguji apakah terdapat perbedaan jumlah kendaraan bertonase tinggi yang menuju Bandung dari Tanjung Priok melalui jalur TOL dan NON TOL pada tingkat keyakinan 95%! Berikut adalah data jumlah kendaraan selama 12 bulan (dalam ribuan unit):

Jalur	TOL										
99	148	247	266	125	124	153	102	111	100	191	202
<u>Jalur</u>	NON T	OL									
120	201	92	63	134	125	76	257	268	129	100	99

Lakukan pengujian hipotesisnya kemudian simpan data dan output dengan nama file **HasilPrak4A** di Local Disk D.

B. Manager Pabrik Perakitan Motor Honda berencana untuk meningkatkan kecepatan sistem perakitannya. Langkah yang dilakukan adalah menggunakan teknologi baru yang didatangkan langsung dari Jepang. Ia mempunyai data waktu yang diperlukan untuk merakit motor untuk setiap teknisinya dengan teknologi lama. Tahap pertama yang dilakukan adalah melakukan training singkat dan kemudian mencoba menerapkan teknologi baru pada proses sebenarnya. Berikut ini adalah data tentang waktu yang diperlukan untuk merakit satu unit motor menggunakan kedua teknologi pada setiap teknisinya (dalam menit):

Tolynici	Tekologi	Teknologi
I CKIIISI	Lama	Baru
1	300	274
2	280	220
3	344	308
4	385	336
5	372	198
6	360	300
7	288	315
8	321	258
9	376	318
10	290	310
11	301	332
12	283	263

Berdasarkan data di atas, ujilah apakah terdapat pengaruh teknologi baru terhadap efisiensi waktu masing-masing teknisinya dalam merakit motor tersebut! Gunakan $\alpha = 5\%$. Simpan data dan output dengan nama file **HasilPrak4B** di Local Disk D. C. Data penjualan Pizza rasa Ayam, Sapi dan Keju disajikan pada tabel di bawah ini. Manager Resto berpendapat bahwa tidak terdapat perbedaan penjualan Pizza dari ketiga rasa tersebut. Gunakan tingkat keyakinan 95% untuk menguji apakah pendapat manager tersebut benar, dengan menggunakan data penjualan sepuluh hari terakhir, sebagai berikut : (dalam loyang)

Ayam	Sapi	Keju
136	107	92
120	114	82
113	125	85
107	104	101
131	107	89
114	109	117
129	97	110
102	114	120
	104	98
	89	106

Simpan data dan output dengan nama file HasilPrak4C di Local Disk D.

D. Pemilik Resto Bumbu Kampung Modern bermaksud menyebarkan kuesioner kepada tamutamu yang datang, agar dapat mengetahui di mana letak kekurangan Resto-nya di mata konsumen. Kuesioner tersebut mencakup kepuasan pelanggan akan Suasana Resto, Pelayanan, dan Cita Rasa makanannya. Hasil analisa kuesioner tersebut akan digunakan untuk meningkatkan kepuasan pelanggannya. Hasil dari kuesioner yang diberikan adalah sebagai berikut:

Kritorio		Ting	kat Kepuasan	
KITTEITä	Sangat Puas	Puas	Tidak Puas	Sangat Tidak Puas
Suasana	51	54	65	50
Pelayanan	65	68	80	70
Cita Rasa	50	50	44	40

Ujilah apakah terdapat hubungan yang signifikan antara kepuasan konsumen dengan ketiga kriteria restoran dalam kuesioner. Gunakan $\alpha = 5\%$.

Simpan data dan output dengan nama file HasilPrak4D di Local Disk D.

BAB V

STATISTIK NONPARAMETRIK

Statistik non parametrik merupakan pengujian statistik yang baik untuk data-data yang mempunyai skala nominal dan ordinal dan atau untuk data yang walaupun berskala interval atau rasio namun memiliki keterbatasan dalam hal data tidak berdistribusi normal. Pembahasan uji statistik non parametrik yang dibahas berikut ini adalah yang berkaitan dengan uji beda.

I. Mann Whitney U Test

Jika dicari perbedaan di dalam dua kelompok data dari dua sampel yang bebas dari populasi yang sama maka digunakan uji Mann-Whitney. Bebas berarti dua sampel tersebut tidak tergantung satu dengan yang lain. Sebagai contoh sikap sampel Pria dan sikap sampel Wanita mengenai sebuah film, dimana tidak mungkin seseorang pada saat yang bersamaan menjadi sampel Pria dan Wanita sekaligus.

Latihan Mann Whitney U Test

Mr. Peter is an investor who invest his money in Royal Co. and Jelly Co. Following is the profit that Mr. Peter accepted from his investment in Royal Corp. and Jelly Corp. (in millions Rupiah):

Royal Corp.	Jelly Corp.
200	300
145	200
190	175
230	234
188	190
250	200
214	366
196	400
200	425
197	390
180	399
213	458
222	500
157	129

Test the null hypothesis that said there is no difference the average of profit that Mr. Peter accepted from his investment in Royal Corp. and Jelly Corp. using 95% level of confidence!

Lakukan prosedur berikut untuk menjawab pertanyaan di atas:

- 1. Buka file MannWhitney.Sav di Local Disk D.
- 2. Perhatikan Data View cara penginputan data dan Variable View untuk pendefinisian variabel.
- 3. Klik menu Analyze, pilih Nonparametric Test, kemudian pilih Legacy Dialogs, lalu pilih 2-Independent Samples.

뒘 Two-Independent-Samples	Tests	×				
<pre>corporation [corp]</pre>	Test Variable List:	Exact Options				
	Grouping Variable:					
Test Type						
👿 Mann-Whitney U	🔲 Kolmogorov-Smirnov Z					
Moses extreme reaction	ns 🔲 <u>W</u> ald-Wolfowitz runs					
OK Paste Reset Cancel Help						

- 4. Masukkan variabel **profit** ke kotak Test variable List. Masukkan variabel **corp** ke kotak Grouping variable.
- 5. Klik Define Groups.

ᄓ Two Independent Samples: 🛛 🗙					
Group <u>1</u> :					
Group <u>2</u> :					
Cancel Help					

Isi Group 1 dengan 0 dan Group 2 dengan 1, kemudian klik Continue.

- 6. Pada Test Type beri centang ($\sqrt{}$) pada **Mann-Whitney** U, kemudian klik Ok.
- 7. Analisa hasil output.

Tabel 5.1 Test Statistics^(b)

	Profit
Mann-Whitney U	48.500
Wilcoxon W	153.500
Z	-2.278
Asymp. Sig. (2-tailed)	.023
Exact Sig. [2*(1-tailed Sig.)]	.021ª

a. Not corrected for ties.

b. Grouping Variable: corporation

Hasil uji Mann-Whitney menunjukkan nilai sig. 0,023 di bawah 0,05 yang artinya bahwa terdapat perbedaan profit yang diterima dari investasi di Royal Corp. dan Jelly Corp. (lihat tabel 5.1).

8. Simpan output dengan nama LatMannWhitney di Local Disc D.

II. Wilcoxon Rank Test

Uji Wilcoxon adalah alternatif untuk uji beda data berpasangan, dimana pada uji Wilcoxon data harus diurutkan (ranking) terlebih dahulu, kemudian baru diproses. Jika prosedur uji tanda hanya berfokus pada arah perbedaan di dalam pasangan data maka dalam uji peringkat bertanda Wilcoxon, pasangan data/subyek yang diukur adalah sama namun diberi 2 macam perlakuan yang berbeda. Sebagai contoh 10 orang diukur berat badannya sebelum dan sesudah diberi obat pelangsing. Dalam hal ini 10 orang tersebut mendapat 2 perlakuan yang berbeda yaitu perlakuan pertama sebelum diberi obat pelangsing.

Latihan Wilcoxon Rank Test

Snips Snaps Co. is a company that moves in medicine trading. Snips Snaps Co. have ten branch company which spread in many town in South Korea. This year, the manager decides to promote their product with TV commercial to increase company sales. Company sales before and after promotion with TV commercial is shown in table below (in millions Won):

Branch	Before Promotion	After Promotion
Pusan	105	110
Seoul	270	280
Inchon	128	130
Taegu	120	125
Ulsan	150	157
Jeju	185	190
Kunsan	170	163
Andong	164	175
Mokpo	140	140
Pohang	190	182

Using level of significance 5% and normal distribution approach, test the null hypothesis that said there is no difference company sales before and after promotion with TV commercial with alternative company sales after promotion with TV commercial is bigger than before promotion with TV commercial!

Lakukan prosedur berikut untuk menjawab pertanyaan di atas:

- 1. Buka file UjiWilcoxon.Sav di Local Disk D.
- 2. Perhatikan Data View cara penginputan data dan Variable View untuk pendefinisian variabel.
- Klik menu Analyze, pilih Nonparametric Test, kemudian pilih Legacy Dialogs, lalu pilih
 2-Related Samples. Kemudian muncul tampilan berikut:

	Test Pa	irs:			Exact
before promotion [b	Pair	Variable1	Variable2		
🔗 after promotion [after]	1			T	Options
				¥	
				↔	
	Test	уре		1	
	🗸 <u>W</u> i	lcoxon			
	Si	gn			
	MC MC	Nemar			
	IVI a	arginal <u>H</u> omog	eneity		

4. Masukkan variabel before promotion dan after promotion ke kotak Test Pair(s) List dengan klik before promotion dan tekan tombol Ctrl di keyboard sambil klik after promotion kemudian klik tanda panah ke kanan Test Pair(s) List.

- 5. Pada Test Type beri tanda centang ($\sqrt{}$) pada Wilcoxon, kemudian klik Ok.
- 6. Analisa hasil output.

a. Based on negative ranks.

Asymp. Sig. (2-tailed)

Ζ

b. Wilcoxon Signed Ranks Test

Hasil uji Wilcoxon menunjukkan nilai sig. (2-tailed) sebesar 0,234 lebih besar dari 0,05 yang artinya tidak terdapat perbedaan penjualan perusahaan sebelum dan sesudah promosi.

7. Simpan output dengan nama LatWilcoxon di Local Disc D.

-1.190^a

234

III. Kruskal Wallis H Test

Jika dicari perbedaan di dalam lebih dari dua kelompok data dari lebih dari dua sampel yang bebas dari populasi yang sama maka digunakan uji Kruskal Wallis. Bebas berarti lebih dari dua sampel tersebut tidak tergantung satu dengan yang lain.

Latihan Kruskal Wallis H Test

Four foods were tested to determine if cholesterol content is the same for each food. Random sample data (grams of cholesterol per 1,000 grams of food) as follows:

Food 1	Food 2	Food 3	Food 4
75	65	59	94
69	87	78	89
83	73	67	80
81	79	62	88
72	81	83	89
79	69	76	70
90	60	99	65
59	50	89	45
70	55	87	58
90	69	67	
98	49		
75			
Perform the Kruskal Wallis test at the $\alpha = 0.05$ to determine if mean cholesterol contents for the food are equal.

Lakukan prosedur berikut untuk menjawab pertanyaan di atas:

- 1. Buka file KruskalWallis.Sav di Local Disk D.
- 2. Perhatikan Data View cara penginputan data dan Variable View untuk pendefinisian variabel.
- 3. Klik menu Analyze, pilih Nonparametric Test, kemudian pilih Legacy Dialogs, lalu pilih k Independent Samples.

food [food]	Test Variable List:
grams of cholestero	>
	Grouping Variable:
Test Type	Define Range
✔ Kruskal-Wallis H	<u>l</u> edian

Pastikan tanda centang ($\sqrt{}$) pada Kruskal-Wallis H.

- 4. Masukkan variabel **grams of cholesterol** ke kotak Test variable List. Masukkan variabel **food** ke kotak Grouping variable.
- 5. Klik Define Groups.

😭 Several Independent Samp 🗾	
Range for Grouping Variable	
Mi <u>n</u> imum: 1	
Maximum: 4	
Continue Cancel Help	

Isi Minimum dengan 1 dan Maximum dengan 4, kemudian klik Continue.

- 6. Kemudian klik Ok.
- 7. Analisa hasil output.

Tabel 5.3 Test Statistics^(a,b)

	grams of cholesterol
Chi-Square	4.584
df	3
Asymp. Sig.	.205

a. Kruskal Wallis Test

b. Grouping Variable: food

Hasil uji Kruskal Wallis menunjukkan nilai sig. sebesar 0,205 lebih besar dari 0,05 yang berarti tidak ada perbedaan grams of cholesterol antara food 1, food 2, food 3 dan food 4.

8. Simpan output dengan nama LatKruskalWallis di Local Disc D.

Praktikum 5

A. Manager Produksi PT "New Philips" memperkenalkan tiga jenis lampu neon terbarunya yang memiliki kemampuan menyala (hidup) yang lebih baik dan lebih lama dari pada lampu neon sejenisnya. Untuk itu diuji sebanyak enam lampu neon dari masing-masing jenis dan dihasilkan lama menyala sebagai berikut (dalam jam):

Lampu Neon "X"	Lampu Neon "Y"	Lampu Neon "Z"
540	450	600
400	540	630
490	400	580
530	410	490
490	480	590
610	370	620

- 1. Ujilah pendapat manajer produksi yang menyatakan tidak terdapat perbedaan rata-rata lama menyala dari ketiga lampu neon tersebut! Gunakan $\alpha = 5\%$!
- 2. Ujilah apakah terdapat perbedaan lama menyala antara lampu neon Y dan Z dengan tingkat keyakinan 95%!
- 3. Simpan data dan output dengan nama HasilPrak5A di Local Disc D.

B. Perusahaan *Fuel Additives* memperkenalkan zat *additive* yang baru, yaitu Premium dan Super Premium. Dua belas mobil diuji coba menggunakan kedua macam zat *additive* tersebut. Hasil yang didapat adalah jarak tempuh per liter bensin yang digunakan dengan penambahan zat *additive* tersebut. Berikut ini adalah data jarak tempuh per satu liter bensin dengan menggunakan zat *adivitive* :

Mobil	ZA Super Premium	ZA Premium
1	20.12	18.05
2	23.56	21.77
3	22.03	22.57
4	19.15	17.06
5	21.23	21.22
6	24.77	23.80
7	16.16	17.20
8	18.55	14.98
9	21.87	20.03
10	24.23	21.15
11	23.21	22.78
12	25.02	23.70

Ujilah bahwa tidak terdapat pengaruh yang signifikan penggunaan kedua zat *additive* terhadap jarak tempuh setiap mobil. (Gunakan tingkat keyakinan 95%) Simpan data dan output dengan nama **HasilPrak5B** di Local Disc D.

BAB VI

KORELASI, SIMPLE REGRESSION DAN MULTIPLE REGRESSION

I. Analisa Korelasi

Koefisien korelasi digunakan untuk mengetahui kuat tidaknya **hubungan** antara variabel independen (X) dengan variabel dependen (Y). Hasil koefisien korelasi terletak di antara nilai korelasi 0 yang menunjukkan tidak adanya hubungan antar variabel sampai dengan 1 yang menunjukkan adanya hubungan yang sempurna antar variabel yang diuji. Apabila ada korelasi maka lihat arahnya positif (+) atau negatif (-). Untuk pengujian korelasi dapat digunakan 2 macam metoda korelasi:

- 1. Pearson Correlation, digunakan untuk data yang berskala interval dan rasio,
- 2. Rank Spearman Correlation, digunakan untuk data yang berskala nominal dan ordinal.

Analisa terhadap korelasi adalah dengan menganalisa:

- Koefisien korelasi, menunjukkan kekuatan dan arah hubungan antar dua variabel. Rentangan nilai koefisien korelasi adalah -1 dan +1 (Sekaran & Bougie 2020). Nilai korelasi sama dengan 0 (nol) artinya tidak terdapat hubungan antar variabel, sedangkan nilai korelasi sama dengan -1 (satu) berarti hubungan antar variabel adalah sempurna dan negatif, dimana nilai korelasi sama dengan +1 berarti hubungan antar variabel adalah sempurna dan negatif, dimana nilai korelasi sama dengan +1 berarti hubungan antar variabel adalah sempurna dan positif. Apabila nilai korelasi mendekati 0 (baik positif maupun negatif), berarti hubungan antar variabel cenderung lemah, sebaliknya apabila nilai korelasi mendekati 1 (baik positif maupun negatif) berarti hubungan antar variabel adalah kuat dan cenderung mengarah pada adanya hubungan yang bersifat sempurna. Koefisien korelasi yang negatif menunjukkan hubungan antar variabel yang terbalik atau tidak searah, sedangkan koefisien korelasi yang positif menunjukkan hubungan antar variabel yang searah.
- 2. Nilai koefisien korelasi tersebut baru dapat diinterpretasikan demikian apabila nilai signifikansinya adalah di bawah 0,05, yang menunjukkan bahwa besaran korelasi tersebut signifikan secara statistik. Bila nilai signifikansi korelasi berada di atas atau sama dengan 0,05 maka korelasi tersebut tidak signifikan secara statistik atau dengan kata lain dapat diinterpretasikan sebagai tidak terdapat korelasi antar variabel yang diuji.

Koefisien Korelasi (r)	Tingkat Hubungan
0	Tidak terdapat hubungan
0,01 - 0,199	Sangat rendah
0,20 - 0,399	Rendah
$0,\!40-0,\!599$	Sedang
$0,\!60-0,\!799$	Kuat
$0,\!80-0,\!999$	Sangat kuat
1	Hubungan sempurna

Tabel 6.1 Tabel Koefisien Korelasi

Sumber : Sugiyono, 2008

II. Analisa Koefisien Determinasi - R² (adj. R²)

Analisa R² (adjusted R²) digunakan untuk mengetahui besarnya variasi dari variabel dependen yang dapat dijelaskan oleh variasi variabel independen, sisanya yang tidak dapat dijelaskan, merupakan bagian variasi dari variabel lain yang tidak termasuk di dalam model. Adjusted R² merupakan ukuran yang lebih baik dari R² dalam hal pengujian kemampuan menjelaskan dari variabel-variabel tambahan yang secara teoritis dapat dimasukkan ke dalam model.

Kelebihan adj. R^2 daripada R^2 adalah apabila suatu model regresi ditambahkan variabel independen yang baru maka adj. R^2 bisa naik atau turun sesuai dengan besaran pengaruh variabel independen tersebut terhadap variabel dependen. Sedangkan R^2 sekemudian naik walaupun besaran pengaruh variabel independen yang baru terhadap variabel dependen adalah tinggi maupun rendah. Apabila nilai adj. R^2 negatif atau 0 artinya tidak terdapat kontribusi variabel independen terhadap variabel dependen.

III. Model Regresi Sederhana

Simple regression atau regresi sederhana adalah pengujian regresi dari 1 variabel independen terhadap 1 variabel dependen. **Pengaruh** dari variabel independen dengan variabel dependen dijabarkan ke fungsi linear dalam bentuk persamaan berikut:

$$\mathbf{Y} = \mathbf{a} + \mathbf{b}\mathbf{X} + \mathbf{e}$$

Keterangan:

Y besarnya nilai variabel dependen

a besarnya intercept coefficient (disebut juga constant

- b besarnya *slope/regression coefficient*
- X besarnya nilai variabel independen
- e error terms atau kesalahan pengganggu

Untuk *multiple regression* maka variabel independen dalam model regresi lebih dari satu. Pengaruh variabel-variabel independen terhadap variabel dependen dapat dijabarkan ke fungsi linear dalam bentuk persamaan berikut:

 $Y = b_0 + b_1 X_1 + b_2 X_2 + \ldots + b_k X_k + e$

Keterangan:

- Y besarnya nilai variabel dependen
- Bo besarnya *intercept coefficient* (disebut juga konstanta)
- B₁ besarnya *slope/regression coefficient* 1
- B₂ besarnya *slope/regression coefficient* 2
- B_k besarnya *slope/regression coefficient* k
- X_{1i} besarnya nilai variabel independen 1
- X_{2i} besarnya nilai variabel independen 2
- Xki besarnya nilai variabel independen k
- E besarnya nilai residual

Persamaan fungsi linear tersebut dapat digunakan sebagai peramalan. Pada kenyataannya yang mempengaruhi variabel dependen bukan hanya dari variabel independen, karena masih ada faktor lain yang tidak dimasukkan ke dalam persamaan. Dengan demikian peramalan menjadi tidak tepat. Kesalahan dalam peramalan dapat diperkecil dengan memperkecil kesalahan dengan memperhitungkan kesalahan penganggu.

IV. Pengujian Hipotesis

1. Uji F

Uji F digunakan untuk mengetahui bilamana variabel independen dapat memprediksi variabel dependen. Bila hasilnya signifikan berpengaruh berarti model yang diuji merupakan model yang fit untuk menguji hipotesis. Selain itu, uji F juga dapat digunakan untuk menguji pengaruh variabel independen secara bersama-sama terhadap variabel dependen.

2. Uji t

Uji t digunakan untuk mengetahui pengaruh variabel independen secara individual terhadap variabel dependen. Dalam banyak kasus untuk regresi sederhana, hasil yang didapat dari uji F nilai signifikannya akan sama dengan nilai signifikan uji t. Hal ini disebabkan karena yang diukur hanya pengaruh dari 1 variabel independen saja.

Prosedur Simple Regression

Penggunaan regresi minimal jumlah sampel (n) adalah 30 kasus (*rule of the thumb*). Data berikut ini adalah data Debt Equity Ratio (X) dan Harga Saham (Y) untuk 112 observasi.

- 1. Buka file RegresiSederhana.Sav di Local Disk D.
- 2. Perhatikan Data View cara input data dan Variable View untuk pendefinisian variabel.
- 3. Klik Analyze di Menu Bar, pilih Regression, pilih Linear.
- 4. Masukkan variabel X ke Independent(s) dengan klik X dan klik tanda panah ke kanan.
- 5. Masukkan variabel Y ke Dependent dengan cara klik Y, kemudian klik tanda panah ke kanan pada Dependent, kemudian klik **Ok**.
- 6. Analisa hasil output:
 - IV. Lakukan analisa korelasi.
 - V. Berapa kontribusi yang diberikan variabel independen terhadap variabel dependen?
 - VI. Buat model regresi linear sederhana. Jelaskan koefisien regresinya.
 - VII. Berapa harga saham kalau debt equity ratio sebesar 1.95?
 - VIII. Lakukan pengujian t dan F.
- 7. Simpan output dengan nama LatRegresiSederhana di Local Disk D.

Prosedur Multiple Regression

Berikut data mengenai Dividend Payout Ratio (DPR), Return on Equity (ROE), Debt Equity Ratio (DER) terhadap Harga Saham. Secara teoritis Harga Saham (Y) dipengaruhi oleh DPR (X1), ROE (X2), dan DER (X3).

- 1. Buka file **Regresi.Sav** di Local Disk D.
- 2. Perhatikan Data View cara input data dan Variable View untuk pendefinisian variabel.
- 3. Klik Analyze di Menu Bar, pilih Regression, pilih Linear.
- Masukkan variabel X1, X2 dan X3 ke Independent(s) dengan cara klik X1, X2, dan X3, klik tanda panah ke kanan pada Independent(s).
- 5. Masukkan variabel Y ke Dependent dengan cara klik Y, kemudian klik tanda panah ke kanan pada Dependent, kemudian klik **Ok**.

Tabel 6.2 Model Summary

			Adjusted R	Std. Error of the
Model	R	R Square	Square	Estimate
1	.319ª	.102	.077	232.47172

a. Predictors: (Constant), debt to equity ratio, return on equity, dividend payout ratio

Tabel 6.3 ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	661166.574	3	220388.858	4.078	.009 ^b
	Residual	5836654.854	108	54043.101		
	Total	6497821.429	111			

a. Dependent Variable: harga saham

b. Predictors: (Constant), debt to equity ratio, return on equity, dividend payout ratio

				Standardized		
		Unstandardize	d Coefficients	Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	237.338	81.780		2.902	.004
	dividend payout ratio	2.320	5.413	.043	.429	.669
	return on equity	20.164	6.526	.304	3.090	.003
	debt to equity ratio	26.521	41.122	.061	.645	.520

Tabel 6.4 Coefficients^a

a. Dependent Variable: harga saham

6. Analisa hasil output:

Lakukan analisa korelasi.

- a. Berapa besarnya kontribusi yang diberikan variabel independen terhadap variabel dependen?
- b. Buatlah persamaan regresinya dan jelaskan arti masing-masing koefisien regresi tersebut.
- c. Jika sebuah perusahaan memiliki DPR = 15.33, ROE = 6.25 dan DER = 1.85. Ramalkan berapa besar harga saham perusahaan tersebut.
- d. Lakukan uji F.
- e. Bagaimana pengaruh secara statistik variabel-variabel independen tersebut terhadap variabel dependen secara individualnya?
- 7. Simpan output dengan nama LatRegresiBerganda di local disk D.

Praktikum Simple Regression

The Rip-off Vending Machine Company operates coffee vending machine in office buildings. The company wants to study the relationship, if any, that exists between the number of cups of coffee sold per day and the number of persons working in each building. Sample data for this study were collected by the company and are presented below: Sumber: Sanders & Smidt, 2000

Number of persons	Number of cups of coffee sold	
working at location		
5	10	
6	20	
14	30	
19	40	
15	30	
11	20	
18	40	
22	40	
26	50	
28	30	
30	40	
32	60	
39	80	
42	30	
45	60	

Gunakan tingkat keyakinan 95% dan lakukanlah analisa regresi yang dapat digunakan untuk memprediksi jumlah kopi yang terjual berdasarkan jumlah pekerja setiap lokasi.

Input data di **Data View** dan pastikan sebelumnya Anda telah mendefinisikan variabel pada **Variable View**. Kemudian lakukan perintah-perintah di bawah ini:

- 1. Lakukan analisa korelasi.
- 2. Berapa besarnya kontribusi yang diberikan variabel independen terhadap variabel dependen?
- 3. Buat model regresi linear sederhana! Jelaskan koefisien regresinya.
- 4. Berapa prediksi besarnya jumlah kopi yang terjual jika jumlah pekerja dalam sebuah lokasi berjumlah 60 orang?
- 5. Lakukan pengujian t dan F.
- 6. Simpan output dengan nama file HasilPrakSimple di Local Disc D.
- 7. Print output dan kumpulkan hasil print output.

Praktikum 6 - Multiple Regression

We are trying to predict the annual demand for widgets (DEMAND) using the following independent variables.

PRICE = price of widgets (in \$)
INCOME = consumer income (in \$)
SUB = price of a substitute commodity

(Note: A substitute commodity is one that can be substituted for another commodity. For example, margarine is a substitute commodity for butter).

Year	Demand	Price (\$)	Income (\$)	Sub (\$)
2007	100	18	1,400	20
2008	90	16	1,500	28
2009	100	18	1,600	24
2010	110	16	1,700	26
2011	120	14	1,800	22
2012	140	12	1,900	30
2013	130	12	2,000	32
2014	130	16	2,100	34
2015	150	10	2,200	44
2016	150	10	2,300	38
2017	160	10	2,400	40
2018	200	6	2,500	46
2019	180	8	2,600	36
2020	190	6	2,700	48
2021	170	8	2,800	42

Input data di **Data View** dan pastikan sebelumnya Anda telah mendefinisikan variabel pada **Variable View**. Kemudian lakukan perintah-perintah di bawah ini dengan menggunakan alpha 5%:

- 1. Lakukan analisa korelasi ganda.
- 2. Lakukan analisa koefisien determinasi.
- 3. Buat model regresi berganda! Jelaskan masing-masing koefisien regresinya.
- 4. Berapa perkiraan besarnya *DEMAND* jika diketahui *PRICE = 20, INCOME = 4,000* dan SUB = 50?
- 5. Lakukan uji F dan uji t.
- 6. Simpan data dan output dengan nama HasilPrak6 di Local Disc D.
- 7. Print output dan kumpulkan hasil output.

BAB VII

MASALAH DALAM REGRESI

I. Multikolinearitas

Untuk menguji apakah dalam suatu model regresi terjadi korelasi yang tinggi atau tidak antar variabel independen (variabel bebas). Acuan penentuan terjadi atau tidaknya multikolinearitas adalah:

- 1. Tidak terjadi multikolinearitas, apabila nilai Tolerance di atas 0,1 dan VIF di bawah 10.
- 2. Terjadi multikolinearitas, apabila nilai Tolerance di bawah 0,1 dan VIF di atas 10.

Prosedur Multikolinearitas

Untuk mengetahui apakah sebuah model regresi berganda terjadi multikolinearitas atau tidak, lakukan prosedur berikut untuk menjawab pertanyaan tersebut:

- 1. Buka file **Regresi.Sav** di Local Disk D.
- 2. Klik Analyze pada Menu Bar, pilih Regression, kemudian pilih Linear.
- 3. Klik **Reset**, kemudian masukkan dependent dengan variabel **harga saham** dan independent(s) dengan **dpr**, **roe**, **der**.

Linear Regression	×
kode perusahaan [k tahun [tahun] fuidend payout rati for return on equity [roe] debt to equity ratio [Dependent: Arga saham [harga_saham] Plots Previous Independent(s): Independent(s): <t< td=""></t<>
ОК	Paste Reset Cancel Help

4. Klik **Statistics**, kemudian non aktifkan pilihan **Estimates** dan **Model fit**, kemudian aktifkan **Covariance matrix** dan **Collinearity diagnostics**, kemudian klik **Continue**.

Regression Coefficients	V Moo	del fit	
✓ Estimates	R squared change		
Confidence intervals	Descriptives		
Level(%): 95	Part and partial correlations		
Covariance matrix	Collinearity diagnostics		
Residuals			
Durbin-Watson			
Casewise diagnostics	5		
Outliers outside:	3	standard deviations	
◎ All cases			

5. Klik **Ok**, akan tampil hasil sebagai berikut:

		Collinearity Statistics		
Model		Tolerance	VIF	
1	(Constant)			
	dividend payout ratio	.817	1.223	
	return on equity	.860	1.163	
	debt to equity ratio	.935	1.070	

Coefficients(a)

Tabel 7.1

Dependent variable: harga saham

Hasil pengujian multikolinearitas menunjukkan bahwa tidak terjadi multikolinearitas dengan nilai *Tolerance* seluruh variabel independen masing-masing di atas 0,1 dan VIF di bawah 10 yang artinya tidak ada hubungan antar variabel independen. Simpan output dengan nama LatMultikolinearitas di *Local Disc* D.

II. Heteroskedastisitas

Uji Heteroskedastisitas digunakan untuk menguji apakah dalam suatu model regresi terdapat kesamaan atau ketidaksamaan varians antara pengamatan yang satu dengan yang lainnya. Beberapa metoda untuk mendeteksi ada tidaknya masalah heteroskedastisitas telah dikembangkan oleh para ahli ekonometrika. Metoda deteksi masalah heteroskedastisitas bisa dilakukan secara grafik maupun dengan non grafik (Uji Glejser, Uji Park, metoda korelasi Spearman, Metode GoldFelt-Quandt, Metode Bruesch-Pagan-Godfrey, Metode White Heteroscedasticity). Namun dalam prosedur ini yang akan dikaji adalah hanya Uji Grafik dan yang Non Grafik, yaitu Uji Glejser.

A. Metoda Grafik

Cara yang paling cepat dan dapat digunakan untuk menguji masalah heteroskedastisitas adalah dengan mendeteksi pola residual melalui sebuah grafik. Jika distribusi residual mempunyai variansi yang sama (homoskedastisitas) maka tidak mempunyai pola yang pasti dari residual. Sebaliknya jika distribusi residual mempunyai sifat heteroskedastisitas, maka distribusi residual ini akan menunjukkan pola yang tertentu.

Prosedur Heteroskedastisitas (Metoda Grafik)

Lakukan pengujian heteroskedastisitas, masih untuk data dalam file **Regresi.Sav** di Local Disk D, dengan prosedur sebagai berikut:

- 1. Klik menu Analyze, pilih Regression, kemudian pilih Linear.
- 2. Klik **Reset**, kemudian masukkan dependent dengan variabel harga saham dan independent(s) dengan **dpr**, **roe**, **der**.

Linear Regression	
kode perusahaan [k] tahun [tahun] ✓ dividend payout rati ✓ return on equity [roe] ✓ debt to equity ratio [Dependent: Statistics Image saham [harga_saham] Piots Previous Next Independent(s): Options Image of the equity ratio [dpr] Piotestrap Image of the equity ratio [dpr] Piotestrap Method: Enter Selection Variable: Rule Case Labels: WLS Weight Waster Reset Cancel

- 3. Klik **Plots**, kemudian masukkan variable **SRESID** pada Y dan **ZPRED** pada X, kemudian klik **Continue**.
- 4. Klik Ok, akan tampil hasil sebagai berikut:

Gambar 7.1 Hasil Uji Heteroskedastisitas

Gambar di atas menunjukan bahwa distribusi residual mempunyai variansi yang sama (homoskedastisitas) karena tidak mempunyai pola yang pasti dari residual output, dengan kata lain tidak terjadi heteroskedastisitas.

B. Metoda Non Grafik (Uji Glejser)

Salah satu metode non grafik untuk mendeteksi adanya heteroskedastisitas adalah uji Glejser. Uji Glejser untuk mengetahui apakah pola residual mengandung heteroskedastisitas atau tidak maka kita dapat melakukan regresi nilai absolute residual dengan variabel independennya. Dalam hal ini variabel yang akan kita regresikan adalah nilai absolut residual sebagai variabel dependen serta dpr, roe dan der sebagai variabel independen. Diharapkan hasil regresi tersebut semua variabel independen adalah tidak berpengaruh (tidak signifikan) terhadap nilai absolut residual. Bentuk persamaan regresinya adalah sebagai berikut:

 $|ei| = b_0 + b_1 DPR + b_2 ROE + b_3 DER + v_1$

Prosedur Heteroskedastisitas (Metoda Non Grafik)

Lakukan pengujian heteroskedastisitas untuk data dengan nama file **Regresi.Sav** di Local Disk

- D, dengan prosedur sebagai berikut:
- 1. Klik menu Analyze, pilih Regression, kemudian pilih Linear.
- 2. Klik **Reset**, kemudian masukkan dependent dengan variabel **harga saham** dan independent(s) dengan **dpr**, roe dan **der**.

둼 Linear Regression	Tes I Hint	×
 kode perusahaan [k] tahun [tahun] dividend payout rati return on equity [roe] debt to equity ratio [Dependent:	Statistics Plots Save Options Bootstrap
	Method: Enter	
	Case Labels:	
	WLS Weight	
ОК	Paste Reset Cancel Help	

3. Klik Save, kemudian berikan tanda centang (√) pada Unstandardized di Residuals dengan cara mengklik Unstandardized di Residuals, kemudian klik Continue.

🔚 Linear Regression: Save 🛛 🗙				
Predicted Values Unstandardized Standardized Adjusted S.E. of mean predictions Distances Mahalanobis Cook's Leverage values	Residuals Unstandardized Standardized Studentized Deleted Studgentized deleted Influence Statistics DfBeta(s) Standardized DfBeta(s) DfFit Standardized DfFit			
Prediction Intervals Mean Intervals Onfidence Interval: 95 % Coefficient statistics Create coefficient statistics Oreate a new dataset	Covariance ratio			
Dataset name: Write a new data file File Export model information to XML file Prowers				
Include the covariance matrix				
Continue Cance	l Help			

- 4. Klik **Ok**, abaikan hasil output SPSS, lihatlah ke Data View akan muncul sebuah varaibel baru, yaitu **res_1** yang merupakan nilai residual dari model regresi.
- 5. Untuk mengabsolutkan nilai residual adalah klik Transform di Menu Bar, klik Compute Variable, pada Target Variable ketikan "ares_1", pada Numeric Expression isilah dengan ABS(res_1) dengan cara memilih ABS(numexpr) pada functions kemudian mengganti tanda ? dengan res_1, kemudian klik Ok.

둼 Compute Variable		X
Compute Variable Target Variable: ares_1 Type & Label A kode perusahaan [k A tahun [tahun] A dividend payout rati A return on equity [roe] A debt to equity ratio [A harga saham [harg Unstandardized Re	■ Numeric Expression: ABS(RES_1) </td <td>Function group: All Arithmetic CDF & Noncentral CDF Conversion Current Date/Time Date Arithmetic Date Creation Functions and Special Variables: \$Casenum \$Date \$Date11 \$JDate \$Date11 \$JDate \$Sysmis \$Time Abs Anv</td>	Function group: All Arithmetic CDF & Noncentral CDF Conversion Current Date/Time Date Arithmetic Date Creation Functions and Special Variables: \$Casenum \$Date \$Date11 \$JDate \$Date11 \$JDate \$Sysmis \$Time Abs Anv
(optional case select	ion condition) OK <u>P</u> aste <u>R</u> eset Cancel Help	Applymodel Arsin Artan

- 6. Lihatlah ke Data View akan muncul sebuah varaibel baru, yaitu **ares_1** yang merupakan absolute dari nilai residual.
- 7. Klik menu Analyze, pilih Regression, kemudian pilih Linear.
- 8. Klik **Reset**, kemudian masukkan dependent dengan variable **ares_1** dan independent(s) dengan **dpr**, **roe** dan **der**.

Linear Regression	A 200 A 2	23
 kode perusahaan [k tahun [tahun] dividend payout rati return on equity [roe] debt to equity ratio [harga saham [harg Unstandardized Re 	Dependent:	Statistics Plo <u>t</u> s S <u>a</u> ve Options Bootstrap

9. Klik Ok, akan tampil hasil sebagai berikut:

Coefficients(a)

		Unstandardized Coefficients			
Model		В	Std. Error	t	Sig.
1	(Constant)	85.927	43.136	1.992	.049
	dividend payout ratio	4.805	2.855	1.683	.095
	return on equity	481	3.442	140	.889
	debt to equity ratio	74.618	21.690	3.440	.001

Dependent variable: ares_1

Dari hasil pengujian heteroskedastisitas menunjukkan bahwa variabel debt to equity ratio terjadi masalah heteroskedastisitas dengan nilai Sig. 0,001 di bawah 0,05. Sedangkan variabel dividend payout ratio dan return on equity tidak terjadi masalah heteroskedastisitas. Simpan output dengan nama **LatHeteroskedastisitas** di Local Disc D.

III. Autokorelasi

A. Uji Durbin-Watson

Uji autokorelasi untuk melihat sebuah model regresi ada korelasi antara kesalahan penganggu pada periode t dan kesalahan penganggu pada periode t-1. (atau antar pengamatan). Acuan dalam mendeteksi Autokorelasi dengan menggunakan uji Durbin-Watson:

			Tidak	Tidak			
	Autokorelasi		Terdapat	Terdapat		Autokorelasi	
	Positif	Indecision	Autokorelasi	Autokorelasi	Indecision	Negatif	
		\longleftrightarrow			\longleftrightarrow		Ļ
	\longleftrightarrow	```	·	→	` `	←	Ļ
0	dl	du	2	4-du	4-dl	4	
	dl = Nilai durbin [.]	watson statist	ics - Lower				
	du = Nilai durbin	watson statist	ics - Upper				
	Nilai dl atau du di	lihat di Tabel	Durbin Watson Sta	itistics			
							Γ

Prosedur Autokorelasi (Uji Durbin-Watson)

Lakukan pengujian autokorelasi masih dengan file **Regresi.Sav** di Local Disk D, dengan prosedur sebagai berikut:

- 1. Klik menu Analyze, pilih Regression, kemudian pilih Linear.
- 2. Klik **Reset**, kemudian masukkan dependent dengan variabel **harga saham** dan independent(s) dengan **dpr**, **roe** dan **der**.

3. Klik **Statistics**, aktifkan pilihan Durbin-Watson pada bagian Residuals. Abaikan bagian lain, kemudian klik **Continue**.

ţ	📔 Linear Regression: Statisti	ics		×
	Regression Coefficien Estimates Confidence intervals Level(%): 95 Covariance matrix	<mark>I M</mark> ode R <u>s</u> qu Desc Part a Co <u>l</u> lir	el fit uared change riptives and partial correlation nearity diagnostics	ıs
	Residuals Durbin-Watson <u>Casewise diagnostics</u> <u>O</u> utliers outside: <u>A</u> ll cases	3	standard deviation	s
	<u>C</u> ontinue	Cancel	Help	

- 4. Klik **Ok**.
- 5. Analisa hasil output.

Tabel 7.3 Model Summary(b)

			Adjusted R	Std. Error of the	
Model	R	R Square	Square	Estimate	Durbin-Watson
1	.319ª	.102	.077	232.47172	.756

a. Predictors: (Constant), debt to equity ratio, return on equity, dividend payout ratio

b. Dependent Variable: harga saham

Nilai Durbin-Watson sebesar 0,756 berada di bawah nilai dl sebesar 1,6373 (lihat tabel Durbin Watson) yang berarti terjadi autokorelasi positif, yaitu terdapat hubungan nilai residual antar pengamatan (perioda). Hal ini disebabkan oleh variasi variabel independen setiap pengamatan adalah sama sehingga nilai residualnya relatif sama. Jika nilai Durbin-Watson terdapat pada *indecesion*, maka pengujian tidak dapat mendeteksi terjadinya autokorelasi dan memerlukan pengujian autokorelasi tambahan.

B. Uji Bruesch-Godfrey

Walaupun uji autokorelasi dari Durbin-Watson (DW) mudah dilakukan, namun uji ini mengandung beberapa kelemahan. Pertama, uji ini hanya berlaku jika variabel independen bersifat random atau stokastik. Jika model memasukkan variabel lagi sebagai variabel independen, maka uji DW tidak bisa digunakan. Kedua, uji DW hanya berlaku jika hubungan autokorelasi antar residual dalam order pertama atau AR(1). Uji DW tidak bisa dilakukan untuk AR(2), AR(3) dan seterusnya. Untuk mengatasi kelemahan-kelemahan tersebut maka dapat digunakan uji **Bruesch-Godfrey** atau lebih dikenal dengan uji Lagrange Multiplier (LM).

Untuk memahami uji LM, misalkan kita mempunyai model regresi sederhana berikut:

$$Y_i = b_0 + b_1 X_{1t} + e_t$$

Langkah-langkah untuk uji LM adalah sebagai berikut:

- 1. Estimasi persamaan di atas dengan metoda OLS dan hitung residualnya.
- Lakukan regresi residual *e_t* dengan seluruh variabel independen dan lag dari residual e_{t-1}, e_{t-2},..., e_{t-p} sehingga persamaan regresi dapat ditulis sebagai berikut:

$$e_t = a_0 + a_1 X_1 + a_2 X_2 + a_3 X_3 + b_1 e_{t-1} + b_2 e_{t-2} + \dots + b_p e_{t-p} + v_t$$

Dari hasil regresi di dapatkan nilai R^2 jika data yang digunakan besar maka (n-p) $R^2 = Xp$, yang mana p adalah derajat kebebasan yang besarnya sama dengan ordo yang digunakan untuk model AR. Jika nilai signifikan di atas dan sama dengan alpha maka tidak terjadi autokorelasi. Jika nilai signifikan di bawah alpha maka terjadi autokorelasi.

Prosedur Autokorelasi (Uji Bruesch-Godfrey)

Lakukan pengujian autokorelasi masih menggunakan file **Regresi.Sav** di Local Disk D, dengan prosedur sebagai berikut:

- 1. Klik menu Analyze, pilih Regression, kemudian pilih Linear.
- 2. Klik **Reset**, kemudian masukkan dependent dengan variabel **harga saham** dan independent(s) dengan **dpr**, **roe** dan **der**.

Linear Regression	San I Blan	×
Image: state in the image: state in	Dependent: harga saham [harga_saham] Block 1 of 1 Previous Next Independent(s): dividend payout ratio [dpr] return on equity [roe] debt to equity ratio [der] Method: Enter Selection Variable: Rule Case Labels: WLS Weight Paste Reset Cancel Help	Statistics Plots Save Options Bootstrap

3. Klik Save, kemudian berikan tanda centang (√) pada Unstandardized di Residuals dengan cara mengklik Unstandardized di Residuals, kemudian klik Continue.

tinear Regression: Save	×			
Predicted Values Unstandardized Standa <u>r</u> dized Adjusted S.E. of mean predictions	Residuals Unstandardized Standardized Standardized Studentized Deleted			
Distances Maḥalanobis Cooṟśs Leverage values Prediction Intervals Mean Individual	 Stud<u>e</u>ntized deleted Influence Statistics Df<u>B</u>eta(s) Standardized DfBeta(s) DfFit Standardized DfFit Covariance ratio 			
Confidence Interval: 95 % Coefficient statistics Image: Coefficient statistics Image: Create a new dataset Dataset name: Image: Dataset name: Image: Coefficient statistics Image: Write a new data file Image: Coefficient statistics				
File Export model information to XML file Browse ☑ Include the covariance matrix				
<u>C</u> ontinue Cance	l Help			

4. Klik **Ok**, abaikan hasil output SPSS, lihatlah ke Data View akan muncul sebuah varaibel baru, yaitu **res_1** yang merupakan nilai residual dari model regresi.

5. Untuk melagkan nilai residual adalah klik Transform di Menu Bar, klik Compute Variable, pada Target Variable ketikan "res_2", pada Numeric Expression isilah dengan LAG(res_1) dengan cara memilih LAG(variable) pada functions kemudian mengganti tanda ? dengan res_1, kemudian klik Ok.

Compute Variable		25
Target Variable: res_2 Type & Label A kode perusahaan (k	= LAG(RES_1)	
 a tartur (artur) ✓ dividend payout rati ✓ return on equity [ree] ✓ debt to equity ratio [✓ harga saham [harg ✓ Unstandardized Re 	+ < > 7 8 9 - <= >= 4 5 6 * = ~= 1 2 3 / & 0 .	Function group: All Arithmetic CDF & Noncentral CDF Conversion Current Date/Time Date Arithmetic Date Creation
	** • () Delete LAG(variable[, n]). Numeric or string. The value of variable in the previous case or n cases before. The optional second argument, n, must be a positive integer; the default is 1. For example, prev4=LAG(gnp,4) returns the value of gnp for the fourth case before the current one. The first four cases bave exchaministing values for new4	Eunctions and Special Variables: Lag(1) Lag(2) Length Lg10 Ln Lngamma Lower Ltrim(1)
(optional case selec	ion condition)	Ltrim(2) Max Mblen.Byte

- Lihatlah ke Data View akan muncul sebuah variabel baru, yaitu res_2 yang merupakan Lag dari nilai residual.
- 7. Klik menu Analyze, pilih Regression, kemudian pilih Linear.
- Klik Reset, kemudian masukkan dependent dengan variable res_1 dan independent(s) dengan dpr, roe dan der serta res_2.

Linear Regression	A 1148 10.11	23
 kode perusahaan [k tahun [tahun] dividend payout rati return on equity [roe] debt to equity ratio [harga saham [harg res_2 	Dependent: Unstandardized Residual [R] Block 1 of 1 Previous Independent(s): Previous Previous Independent(s): Previous Independent(s): Previous Independent(s): Previous Previou	Statistics Plots Save Options Bootstrap
ОК	Selection Variable: Question Variable: Case Labels: WLS Weight Paste Reset Cancel	

9. Klik **Ok**.

10. Analisa hasil output.

		Unstandardized Coefficients			
Model		В	Std. Error	t	Sig.
1	(Constant)	42.008	63.960	.657	.513
	dividend payout ratio	4.418	4.261	1.037	.302
	return on equity	-7.241	5.162	-1.403	.164
	debt to equity ratio	-14.769	32.117	460	.647
	res_2	.644	.076	8.413	.000

Tabel 7.4 Coefficients(a)

a. Dependent variable: Unstandardized Residual

- 11. Selain dilihat dari nilai χ^2 (Chi Square), masalah autokorelasi dalam model regresi dapat dilihat dari signifikansi nilai **res_2** terhadap **res_1**. Jika **res_2** berpengaruh (signifikan) terhadap res_1 maka dapat disimpulkan terdapat masalah autokorelasi dalam model regresi. Sebaliknya, jika **res_2** tidak berpengaruh (tidak signifikan) terhadap res_1 maka dapat disimpulkan tidak terdapat masalah autokorelasi dalam model regresi.
- 12. Simpan output dengan nama LatAutokorelasi di Local Disc D.

Praktikum 7

Buka kembali Praktikum 6 - *Multiple Regression* pada bab sebelumnya, kemudian lakukan Uji Asumsi Klasik dengan seluruh metode yang telah dipelajari untuk melihat apakah terdapat masalah multikolinearitas, heteroskedastisitas dan autokorelasi dalam model regresi. Simpan output dengan nama **HasilPrak7** di Local Disc D.

BAB VIII REGRESI LOGISTIK

Regresi logistik (*logistic regression*) digunakan apabila variabel dependen dalam hubungan sebab akibat yang sedang diuji merupakan variabel dummy (*dummy variable*). Variabel dummy adalah variabel yang berskala nominal dengan 2 kategori yang diwakili angka 0 dan 1. Ingat variabel dummy hanya mungkin bernilai 0 dan 1 dan apabila ada variabel yang mempunyai kategori lainnya selain 0 dan 1 maka variabel tersebut dapat disebut variabel non metrik namun bukan sebagai variabel dummy.

Nilai 0 dan 1 masing-masing mewakili 2 kategori yang ada dalam sebuah variabel. Sebagai contoh gender yang terdiri dari kategori pria dan wanita, angka 1 mewakili pria dan angka 0 mewakili wanita. Contoh lainnya variabel kemungkinan bangkrut yang terdiri dari 2 kategori, yaitu bangkrut dan tidak bangkrut, angka 1 mewakili bangkrut dan angka 0 mewakili tidak bangkrut.

Secara khusus, regresi logistik digunakan karena variabel dependen dalam regresi adalah variabel dummy sehingga regresi biasa *(Ordinary Least Square/OLS regression)* tidak dapat digunakan dalam masalah ini. Untuk regresi logistik, variabel independennya dimungkinkan berskala interval, rasio atau bahkan berbentuk variabel dummy juga. Selain itu regresi logistik tidak mensyaratkan kewajiban normalitas data, sehingga data yang tidak terdistribusi normal dapat dengan mudah diuji dengan menggunakan uji regresi logistik. Regresi logistik yang mengunakan variabel independen lebih dari satu, perlu dilakukan uji multikolinearitas dengan menggunakan korelasi antar variabel independen (Hair et al. 2018).

Prosedur Pengujian

Seorang peneliti akan menguji dan menganalisis variabel-variabel yang mempengaruhi perusahaan untuk melakukan *share split* atau tidak melakukan *share split*. Secara khusus yang dipertimbangkan hanyalah 2 variabel yang dianggap berpengaruh, yaitu EPS (*Earnings per Share*) dan DER (*Debt to Equity Ratio*). Lakukan prosedur berikut untuk menjawab pertanyaan di atas:

1. Buka file LogitRegresi.Sav di Local Disk D.

- 2. Perhatikan Data View cara penginputan data dan Variable View untuk pendefinisian variabel.
- 3. Klik Analyze pada Menu Bar, pilih Regression, kemudian pilih binary logistic.
- Masukkan variabel stsp ke kotak Dependent dan masukkan variabel eps dan der ke dalam kotak Covariates.

ta Logistic Regression	×
Dependent:	Ext Categorical <u>Save</u> <u>Options</u> Bootstrap
Selection Varia <u>b</u> le:	R <u>u</u> le
OK Paste Reset Cancel He	elp

 Klik Option, kemudian berikan tanda centang (√) pada Classification Plots, Hosmer-Lemeshow goodness-of-fit, Iteration history dan Include constant in model, kemudian klik Continue.

Logistic Regression: Options				×
Statistics and Plots				
✓ Classification plots	Correlations of	festimates	;	
▼ Hosmer-Lemeshow goodness-of-fit	Iteration history	/		
Casewise listing of residuals	CI for exp(B):	95	%	
Outliers outside 2 std. dev.				
- Display				
At each step O At last step				
Probability for Stepwise		Classific	ation cutoff:	0.5
E <u>n</u> try: 0.05 Remo <u>v</u> al: 0.10		Movinuu	- Iterationa:	
		Maximum	niterations.	20
Conserve memory for complex analyse	s or large <u>d</u> atasets			
✓ Include constant in model				
Continue	Cancel Help			

6. Klik Ok

7. Analisa hasil output.

a. -2 log likelihood

Tabel 8.1

Iteration History(a,b,c)

		-2 Log	
Iteration		likelihood	Coefficients
			Constant
Step 0	1	48.263	.171
	2	48.263	.172

a Constant is included in the model.

b Initial -2 Log Likelihood: 48.263

c Estimation terminated at iteration number 2 because parameter estimates changed by less than .001.

Tabel	8.2
-------	-----

Iteration History(a,b,c,d)

Iteration	-2 Log likelihood	Coefficients		
]	Constant	EPS	DER
Step 1 1	39.781	.573	001	.011
2	37.202	.738	003	.014
3	35.952	.889	004	.022
4	35.785	.948	005	.031
5	35.783	.955	005	.032
6	35.783	.955	005	.032

a Method: Enter

b Constant is included in the model.

c Initial -2 Log Likelihood: 48.263

d Estimation terminated at iteration number 6 because parameter estimates changed by less than .001.

Nilai -2 log likelihood menurun nilainya bila dibandingkan antara iterasi pada block 0 (yang hanya konstanta saja) dengan iterasi pada block 1 (iterasi yang mengikutkan semua variabel independen), hal ini menunjukkan indikasi adanya model yang baik. Walaupun untuk kepastiannya diperlukan pengujian statistik dengan menggunakan nilai χ^2 (Chi Square). Penurunan nilai -2 Log likelihood dari blok 0 ke blok 1 sebesar 12,48 yang nilainya lebih besar dari nilai krtis χ^2 tabel, yaitu 5,99 dengan df 2 dan tingkat signifikan 5%.

b. Nagelkerke R²

Т

	l abel 8.3	
Мос	lel Summar	y
-2 Log	Cox & Snell	Nagelker

T 1 10 2

	-2 Log	Cox & Snell	Nagelkerke R
Step	likelihood	R Square	Square
1	35.783	.300	.401

Nilai Nagelkerke R² adalah 0,401, yang berarti hanya 40,1 persen variasi dari variabel dependen yang dapat dijelaskan oleh variasi variabel independen dalam model ini, dan sisanya dijelaskan oleh variasi variabel independen yang tidak terdapat dalam model.

c. Hosmer and Lemeshow Test

Tabel 8.4

Hosmer and Lemeshow Test

Step	Chi-square	df	Sig.
1	8.606	7	.282

Nilai Hosmer and Lemeshow test menunjukkan nilai signifikansi sebesar 0,282 > 0,05, karena nilainya yang tidak signifikan maka ini menunjukkan bahwa model fit dengan data observasi penelitian.

d. Tingkat Ketepatan Prediksi Model

Tabel 8.5 Classification Table(a)

	Observed	Observed		Predicted			
	-		S_S	PLIT	Percentage Correct		
			0	1			
Step 1	S_SPLIT	0	10	6	62.5		
		1	3	16	84.2		
	Overall Percen	tage			74.3		

a The cut value is .500

Berdasarkan data yang diperoleh ada 19 perusahaan yang melakukan *share split* akan tetapi yang tepat diprediksi berdasarkan model sebesar 16 perusahaan (84,2%, 16/19) dan sisanya 3 perusahaan (8,6%, 3/35) tidak tepat diprediksi yang merupakan kesalahan tipa I. Untuk perusahaan yang tidak melakukan *share split* sebanyak 16 perusahaan akan tetapi yang tepat diprediksi berdasarkan model sebesar 10 perusahaan (62,5%, 10/16) dan sisanya 6 perusahaan (17,1%, 6/35) tidak tepat diprediksi yang merupakan kesalahan tipa II. Secara keseluruhan ketepatan prediksi berdasarkan model sebesar 26 perusahaan (74,3%, 26/35).

e. Efek pengaruh variabel independen terhadap variabel dependen

		В	S.E.	Wald	Df	Sig.	Exp(B)
Step 1(a)	EPS	005	.002	4.733	1	.030	.995
	DER	.032	.115	.079	1	.778	1.033
	Constant	.955	.546	3.054	1	.081	2.598

Tabel 8.6 Variables in the Equation

a Variable(s) entered on step 1: EPS, DER.

Hanya variabel EPS saja yang berpengaruh terhadap probabilitas terjadinya *share split* karena nilai signifikansinya yang bernilai di bawah 0,05 (yaitu 0,03 < 0,05) sedangkan variabel independen lainnya (termasuk konstanta) tidak berpengaruh secara signifikan terhadap probabilitas terjadinya *share split*.

Praktikum 8

Mauricio Pochettino adalah seorang pelatih salah satu klub sepakbola Prancis yaitu Paris Saint-Germain (PSG). Mauricio ingin melakukan penelitian untuk menentukan apakah Berat Badan dan Tinggi Badan pemain akan mempengaruhi Performa dari pemain tersebut.

Performa Pemain dikategorikan sebagai berikut: Performa Pemain Baik = 1 Performa Pemain Buruk = 0

Dalam memenuhi penelitian tersebut, Mauricio Pochettino memilih 15 pemain utama dalam klub tersebut dan diperoleh data sebagai berikut:

No	Nama Pemain	Berat Badan	Tinggi Badan	Performa
1	Neymar	68	175	1
2	Sergio Ramos	82	184	1
3	Di Maria	75	180	1
4	Marco Verratti	60	165	0
5	Lionel Messi	67	169	1
6	Leandro Paredes	75	180	0
7	Donnarumma	90	196	0
8	Danilo Pereira	83	190	1
9	Kylian Mbappe	73	178	1
10	Nuno Mendes	70	176	0
11	Presnel Kimpembe	77	183	1
12	Marquinhos	79	183	0
13	Achraf Hakimi	73	181	1
14	Mauro Icardi	75	181	1
15	Julian Draxler	72	185	0

Input data di **Data View** dan pastikan sebelumnya Anda telah mendefinisikan variabel pada **Variable View**. Kemudian lakukan perintah-perintah di bawah ini dengan menggunakan pengujian regresi logistik dan alpha 5%:

- 1. Lakukan analisis -2 Log Likelihood!
- 2. Lakukan analisis Nagelkerke R²!
- 3. Lakukan analisis Hosmer & Lemeshow Test!
- 4. Lakukan uji tingkat ketepatan prediksi model!
- 5. Lakukan uji pengaruh variabel independen terhadap variabel dependen!
- 6. Simpan data dan output dengan nama HasilPrak8 di Local Disc D.
- 7. Print output dan kumpulkan hasil output.

BAB IX

MODERATED REGRESSION DAN PATH ANALYSIS

Variabel Kontinjensi

Banyak penelitian sosial yang menggunakan variabel kontinjensi yang didasarkan pada teori kontinjensi, yaitu tidak ada suatu sistem akuntansi managemen secara universal yang selalu tepat untuk dapat diterapkan pada seluruh organisasi dalam setiap keadaan akan tetapi sistem akuntansi managemen (SAM) bergantung pada faktor-faktor kontekstual dalam organisasi (Otley 1980). Faktor kontekstual berupa variabel kontinjensi, yaitu variabel perantara (intervening) dan pemoderasi (moderating).

A. Variabel Pemoderasi

Contoh model penelitian yang menggunakan variabel pemoderasi:

Budget emphasis pada hubungan antara Partisipasi Anggaran dan Senjangan Anggaran

Gambar di atas menunjukan bahwa Budget Emphasis merupakan variabel pemoderasi, yang dapat memperkuat dan memperlemah pengaruh Partisipasi Anggaran terhadap Senjangan Anggaran. Pengujian atas model penelitian tersebut menggunakan Moderated Regression Analysis dengan persamaan sebagai berikut:

 $Y = b_0 + b_1 X_1 + b_2 X_2 + b_3 X_1 X_2 + e$

Keterangan:

- Y = Senjangan Anggaran
- b₀ = besarnya *intercept coefficient* (disebut juga konstanta)
- b_1 = besarnya *slope coefficient* 1

- $b_2 = besarnya \ slope \ coefficient \ 2$
- b₃ = besarnya *slope coefficient* interaksi
- X₁ = besarnya nilai Partisipasi Anggaran
- X_{2i} = besarnya nilai *Budget Emphasis*
- e = besarnya nilai residual

Apabila Budget Emphasis merupakan variabel pemoderasi, maka nilai b₃ adalah signifikan. Berikut cara pengujian dengan menggunakan Moderated Regression Analysis:

98

- 1. Buka file UjiKontinjensi.sav
- 2. Klik Transform kemudian pilih Compute

 Tuliskan 'XbpXbe' pada Target Variable, masukan 'xbp*xbe' pada Numeric Expression, kemudian klik Ok, akan muncul variabel XbpXbe yang merupakan variabel interaksi antara xbp dan xbe.

<u>F</u> ile	Edit	View	<u>D</u> ata	Transform	Anal	yze g	<u>G</u> raphs	<u>U</u> tilities	Extensions	Windo
2					2				H	
18 :										
		ø	xbp	🛷 xt	e	4	×bs	🛷 Xb	pXbe	var
	1		5.67		3.60		2.0	0	20.40	
	2		5.00		5.60		4.0	0	28.00	
	3		4.67		5.60		2.7	5	26.13	
	4		4.67		3.80		3.5	0	17.73	
	5		4.50		5.40		3.0	0	24.30	
	6		3.83		4.00		4.7	5	15.33	
	7		4.67		4.40		1.0	0	20.53	
	8		1.00		2.60		5.0	0	2.60	
	9		4.00		6.20		1.7	5	24.80	
1	0		3.33		4.80		2.0	0	16.00	
1	1		2.33		4.00		4.0	0	9.33	
1	2		5.50		1.20		2.5	0	6.60	
1	3		2.50		1.60		1.2	5	4.00	
1	4		3.67		5.00		4.0	0	18.33	
1	5		5.17		6.00		4.0	0	31.00	
1	6		3.00		4.20		3.5	0	12.60	
1	7		2.67		2.80		4.0	0	7.47	
1	8		4.33		6.60		5.2	5	28.60	
1	9		4.50		5.00		5.2	5	22.50	
2	!0		3.33		5.20		3.5	0	17.33	
2	!1		4.33		4.00		2.5	0	17.33	
2	2		4.00		4.00		5.0	0	16.00	
2	3		4.17		6.40		4.5	0	26.67	
		4								

- 4. Klik Analyze di Menu Bar, pilih Regression, pilih Linear.
- Masukkan variabel X ke Independent(s) dengan cara klik X, klik tanda panah ke kanan pada Independent(s).
- 6. Masukkan variabel Y ke Dependent dengan cara klik Y, kemudian klik tanda panah ke kanan pada Dependent, kemudian klik **Ok**, akan muncul hasil sebagai berikut:

Model		Unstandardized Coefficients		t	Sig.
		В	Std. Error		
1	(Constant)	5.203	1.747	2.978	.005
	XBP	647	.432	-1.497	.142
	XBE	275	.399	690	.494
	XBPXBE	.115	.093	1.245	.220

Tabel 9.1 Coefficients(a)

a Dependent Variable: XBS

Hasil pengujian di atas menunjukan bahwa nilai koefisien variabel interaksi memiliki nilai Sig. 0,220 di atas 0,05. Hal ini menunjukan bahwa Budget emphasis bukan merupakan variabel pemoderasi.

B. Variabel Perantara

Variabel perantara fungsinya memediasi hubungan antara variabel independen dan variabel dependen. Contoh model penelitian yang menggunakan variabel perantara:

Gambar 9.2

Budget emphasis perantara hubungan Partisipasi Anggaran dan Senjangan Anggaran

Gambar di atas menunjukan bahwa *Budget Emphasis* merupakan variabel perantara hubungan antara Partisipasi Anggaran dan Senjangan Anggaran. Partisipasi Anggaran berpengaruh langsung terhadap Senjangan anggaran. Selain itu, Partisipasi Anggaran berpengaruh tidak langsung terhadap Senjangan Anggaran melalui *Budget Emphasis*. Dengan terlibatnya manajer dalam membuat anggaran maka penilaian kinerja mereka berdasarkan anggaran tersebut sehingga terbuka kesempatan untuk melakukan senjangan anggaran.

Untuk pengujian yang menggunakan variabel perantara adalah analisis jalur. Analisis jalur mengkonfirmasi hubungan kausalitas antar variabel berdasarkan teori. Berdasarkan gambar model jalur menunjukan bahwa Partisipasi Anggaran berpengaruh secara langsung terhadap Senjangan Anggaran. Selain itu, Partisipasi Anggaran juga berpengaruh secara tidak langsung terhadap Senjangan Anggaran melalui *Budget Emphasis*. Persamaan regresi yang diajukan untuk model di atas adalah sebagai berikut:

Senjangan Anggaran=b1Partisipasi Anggaran + b2Budget Emphasis + e1 (1) Budget Emphasis = b3Partisipasi Anggaran + e2 (2)

Pengujian sama dengan regresi, berikut cara pengujian dengan menggunakan analisis jalur:

- 1. Buka file UjiKontinjensi.sav
- 2. Klik Analyze di Menu Bar, pilih Regression, pilih Linear.
- 3. Masukkan variabel **X** ke Independent(s) dengan cara klik **X**, klik tanda panah ke kanan pada Independent(s).
- 4. Masukkan variabel Y ke Dependent dengan cara klik Y, kemudian klik tanda panah ke kanan pada Dependent, kemudian klik **Ok**, akan muncul hasil sebagai berikut:

Tabel 9.2
Coefficients(a)

Model		Standardized Coefficients	t	Sig.
		Beta		
1	(Constant)		4.230	.000
	XBP	158	972	.337
	XBE	.197	1.209	.234

a Dependent Variable: XBS

5. Lakukan juga untuk persamaan kedua, akan muncul hasil sebagai berikut:

Tabel 9.3					
		Coefficients	(a)		
		Standardized			
Model		Coefficients	t	Sig.	
		Beta			
1	(Constant)		6.040	.000	
	XBP	.343	2.368	.023	

a Dependent Variable: XBE

Berdasarkan hasil pengujian di atas, dapat dibuat diagram jalur sebagai berikut:

Pada gambar di atas menunjukan bahwa Partisipasi Anggaran tidak berpengaruh secara langsung ke Senjangan Anggaran (B -0,158 dengan Sig.0,337>0,05). Sedangkan Partisipasi Anggaran berpengaruh terhadap Budget Emphasis (B 0,343 dengan Sig.0,023<0,05). Budget Emphasis tidak berpengaruh terhadap Senjangan Anggaran (B 0,197 dengan Sig.0,234>0,05). Partisipasi Anggaran juga tidak berpengaruh secara tidak langsung terhadap Senjangan Anggaran melalui Budget Emphasis. Hal ini menunjukan bahwa Budget Emphasis bukan merupakan variabel perantara (nilai koefisien pengaruh langsung |-0,158| lebih besar dari pengaruh tidak langsung 0,0675, 0,343*0,197) (Abu-Bader & Jones 2021)

Praktikum 9

Bapak Eric merupakan seorang dosen di salah satu universitas di Indonesia dimana Bapak Eric berniat melakukan penelitian untuk mengetahui apakah waktu belajar secara tidak langsung mempengaruhi IPK mahasiswa melalui nilai ujian. Dalam mewujudkan penelitian tersebut, Bapak Eric mengambil sample 15 mahasiswa secara acak dan diperoleh data sebagai berikut:

Mahasiawa	Waktu	Nilei Uiien	IDIZ	
Manasiswa	Belajar	Milai Ujian	IFK	
1	12	65	3,48	
2	15	88	3,00	
3	13	91	2,14	
4	12	77	2,34	
5	10	75	2,56	
6	16	90	3,99	
7	11	60	3,66	
8	12	50	3,78	
9	12	80	3,38	
10	14	83	2,79	
11	16	88	2,85	
12	15	78	3,49	
13	13	86	2,37	
14	13	68	2,52	
15	11	87	2,75	

Input data di **Data View** dan pastikan sebelumnya Anda telah mendefinisikan variabel pada **Variable View**. Kemudian lakukan perintah-perintah di bawah ini dengan menggunakan pengujian analisis jalur dan alpha 5%:

- 1. Buatlah diagram jalur!
- 2. Buatlah persamaan regresi!
- 3. Lakukan pengujian variabel intervening dengan menggunakan 4 hipotesis!
- 4. Simpan data dan output dengan nama HasilPrak9 di Local Disc D.
- 5. Print output dan kumpulkan hasil output.

BAB X

STRUCTURAL EQUATION MODELLING (AMOS)

Salah satu aplikasi Structural Equation Modelling (SEM) menggunakan AMOS. Amos lebih mudah penggunaannya. Hal-hal terkait dengan SEM:

Variabel laten dan variabel manifes

Variabel laten adalah variabel yang tidak dapat diukur secara langsung kecuali diukur dengan variabel manifes. Contoh Informasi sistem akuntansi manajemen tidak dapat diukur secara langsung kemudian diturunkan menjadi 4 elemen, yaitu *broad scope, timeliness, aggregation,* dan *integration*. dan Keempat elemen (variabel manifes) dapat diukur secara langsung dengan beberapa pertanyaan. Variabel laten diberi simbol elips dan **harus** selalu disertai beberapa variabel manifes. Variabel manifes adalah variabel yang digunakan untuk menjelaskan atau mengukur sebuah variabel laten. Variabel manifes diberi simbol kotak. Sebuah variabel manifes dapat ditampilkan tanpa adanya variabel laten (Santoso, 2015).

Variabel laten eksogen dan endogen

Variabel eksogen adalah variabel independen yang mempengeruhi variabel dependen. Pada SEM, variabel eksogen ditunjukkan dengan adanya anak panah dari variabel tersebut ke variabel endogen. Variabel endogen adalah variabel dependen yang dipengaruhi oleh variabel independen. Pada SEM, variabel endogen ditunjukkan dengan adanya anak panah menuju variabel tersebut. Pada SEM, Variabel dependen dapat menjadi variabel independen untuk variabel lain.
Model pengukuran dan model struktural

Variabel laten harus dijelaskan dengan variabel manifes (indikator. Model pengukuran adalah bagian dari SEM yang menggambarkan hubungan antara variabel laten dan indikatornya.

Contoh model pengukuran

Model struktural menggambarkan hubungan antar variabel laten. Model strukutral dapat menggambarkan hubungan antara variabel eksogen dan endogen tanpa harus berupa variabel laten seperti gambar di bawah (Santoso, 2015).

Error pada sebuah pengukuran dan model struktural

Setiap indikator akan terdapat *error* yang ditampilkan dalam bentuk lingkaran kecil. Indikator broad scope bertujuan untuk menjelaskan konstruk informasi sistem akuntansi manajemen. Sejumlah pertanyaan tentang *broad scope* belum tentu dapat mengukur secara tepat informasi sistem akuntansi manajemen. Hal ini membuat setiap indikator terdapat *error* atau kesalahan dalam pengukuran. Pada sebuah model structural yang menggambarkan hubungan antara variabel eksogen dan endogen. Tidak hanya variabel eksogen dalam model struktural yang mempengaruhi variabel endogen masih ada variabel lain yang tidak ada dalam model struktural. Variabel lain tersebut disebut *residual error*.

Confirmatory factor analysis (CFA)

CFA digunakan untuk mengukur apakah sebuah indikator dapat mengukur apa yang seharusnya diukur. Sebuah indikator harus dapat mengukur sebuah konstruk.

SEM dengan Amos

Buka Amos Graphics						
🚯 Unnamed project : Group number 1 : Input					3 <u>772</u>	×
File Edit View Diagram Analyze Tools Pl	gins Help					
Group number 1						
the second secon						
+ • 🗱						
Unstandardized estimates						
Standardized estimates						
۵ 😳 🔨						
A 2-2 0						
∞ ∞ ∰						
D D D Ex01-a A Ex01 Ex01 Ex02 Ex03						
Ex04 Ex05-a	Path diagram Ta	Tables	 		 	
Not estimating any user-defined estimand	au diagram nu					

Pedoman membuat SEM dengan amos:

1. Perhatikan jumlah variabel laten dan hubungan antar variabel laten. Membuat dan menamai

variabel laten dengan bentuk

- 2. Setelah variabel laten dibuat selanjutnya diberi nama
- 3. Variabel laten harus memiliki dua atau lebih indikator (variabel manifes) dalam bentuk

 Klik Title pada bagian *tools* sebelah kiri. Ketik caption sebagai berikut : chi-square=\cmin prob=\p 111

GFI=\GFI

AGFI=\AGFI

Lalu klik **Ok**

- 5. Setiap variabel manifest diberi nama
- 6. Setiap variabel manifes memiiki *error* begitu juga dengan variabel endogen dalam bentuk
- 7. Setelah terbentuk variabel laten dan manifes maka gunakan tanda anak panah untuk menunjukkan hubungan antar variabel laten.

Buatlah model struktural sebagai berikut:

- Klik pada ikon lalu gerakan pointer pada drawing area sebelah kanan dan buatlah sebuah variabel laten. Untuk membuat variabel laten berikutnya guanakan ikon agar lebih mudah dan ukuran sama. Klik kemudian klik gerkan pointer pada variabel laten dan drag ke bawah (sesuai dengan letak yang diinginkan). Apabila hendak menghapus variabel laten, maifes dan error gunakan ikon kemudian klik pada variabel yang dihapus.
- 2. Untuk memberi nama variabel laten dan manifes. Double klik pada variabel laten atau manifes dan akan muncul object properties.

Isilah sesuai dengan nama variabel laten dan manifes. Nama variabel harus sesuai dengan nama yang di data (excel dan spss).

3. Klik pada ikon lalu gerakan pointer ke variabel laten, buatlah variabel manifes untuk

. Kemudian beri nama variabel manifes sesuai mengukur variabel laten langkah di atas. Untuk mengatur letak variabel manifes gunakan ikon $^{\bigcirc}$.

- 4. Klik ikon 🕶 untuk menghubungkan antar variabel laten. Gunakan 🛀 untuk menghubungkan dari variabel eksogen ke endogen. Gunakan 😁 untuk menghubungkan antar variabel eksogen.
- 5. Kemudian klik ikon pada setiap variabel endogen. Setiap *error* pada variabel endogen diberi nama.
- 6. Apabila terdapat variabel manifes yang mempengaruhi variabel endogen. Klik ikon dan buatlah variabel manifes kemudian beri nama variabel manifes dan berilah 🖛 untuk menghubungkan dari variabel manifes ke variabel endogen.
- 7. Untuk memindahkan variabel gunakan ikon

8. Untuk mengecek variabel klik ikon

🖧 Variables in

£.	Variables in	. ?	×
e1 e2 e3 e4 kin kor san time	er ad or erja mpetisi n e	agre broad e1 e2 e3 e4 error inte kinerja kompe sam time	tisi

akan tampil

Latihan AMOS

1. Buatlah model struktural dan pengukuran sebagai berikut:

2. Bukalah data, klik file kemudian klik Data Files atau klik uta akan tampil sebagai berikut:

		` `			-
Data Files					
Group Name File Va	ariable Value	N			
Group number 1 <working></working>					
J					
File Name	W	orking File		Help	1
					1
View Data	Grou	ping Variable		Group Value	
OK				Crossel	1
OK				Cancel	
Allow non-numeric	: data	Г	Assiand	cases to groups	
		,	soigii i	Second Brooks	

Klik File Name, pilih file excel sam (data dapat berupa file excel dan spss)

Group Name	File Variab	le Value N		
Group number 1	SAM (XLS)	100/100		
	File Name	Working File	Help	
	View Data	Grouping Variable	Group Value	
	ОК		Cancel	
		1		

Klik View Data untuk memastikan apakah sesuai dengan data yang dimaksud

ile Format Help					
	broad	time	agre	inte	kompetisi
	▶ 9	7	10	7	9
	7	7	10	9	10
	9	10	10	7	5
	6	9	10	9	10
	5	10	7	7	10
	16	9	7	7	16
	9	10	10	10	7
	9	10	9	9	7
	10	10	10	10	10
	9	9	9	9	9
	6	9	9	10	10
	7	10	10	10	7
	8	9	9	3	10
	4	6	6	9	10
	9	5	5	9	9
	3	5	5	10	8
	9	10	9	9	9
	9	10	7	6	10
	9	10	q	7	8

3. Untuk mengecek variabel sesuai dengan data klik ikon akan tampil

proad
time
agre
inte
kompetisi
kineria
Kinoja

4. Untuk melihat output, klik View kemudian klik Analysis Properties atau klik usaa akan muncul tampilan sebagai berikut:

👫 Analysis Properties	? ×
Title Estimation Numerical Bias Output	Bootstrap Permutations Random #
 Minimization history 	Indirect, direct & total effects
Standardized estimates	Factor score weights
Squared multiple correlations	Covariances of estimates
Sample moments	Correlations of estimates
Implied moments	Critical ratios for differences
All implied moments	Tests for normality and outliers
Residual moments	Observed information matrix
Modification indices	4 Threshold for modification indices

Pilihlah sesuai dengan yang dibutuhkan (pilih Standardized Estimates dan Squared Multiple

Correlations). Klik Analyze kemudian klik Calculate Estimates atau klik

view ofutput

akan muncul tampilan berikut:

chi-square=7,271 prob=,508 GFI=,977 AGFI=,940 TTTT

5. Untuk melihat pengaruh variabel eksogen ke endogen. Pilih View dan Tex Output atau klik

akan muncul tampilan berikut:	
🚓 Amos Output	– 🗆 X
🗟 🖨 📭 🖻 🖬 🗹 3 🔹 7 🔹 0	- + = = : (2
 amos_sam.amw Analysis Summary Notes for Group Variable Summary Parameter Summary Assessment of normality Observations farthest from the centroid (Mahalanobis distance) Notes for Model Estimates Notes for Group/Model Minimization History Model Fit Execution Time 	Notes for Model (Group number 1 - Default model) The following variances are negative. (Group number 1 - Default model) e2 -5.720

Pilih Estimates

stimates (Group number 1 - Default model)							
icalar Estimates (Group number 1 - Default model)							
faximum Likel	ihood Estimat	es					
Pagnagaian Waighta, (Cuann numban 1 Dafault madal)							
Kegression Weights: (Group number 1 - Default model)							
		Estimate	S.E.	C.R.	Р	Labe	
broad <	sam	Estimate 1.000	S.E.	C.R.	Р	Labe	
broad < time <	sam sam	Estimate 1.000 6.289	S.E. 16.128	C.R.	P .697	Labe	
broad < time < agre <	sam sam sam	Estimate 1.000 6.289 220	S.E. 16.128 .217	C.R. .390 -1.016	P .697 .310	Labe	
broad < time < agre < inte <	sam sam sam	Estimate 1.000 6.289 220 .453	S.E. 16.128 .217 .269	C.R. .390 -1.016 1.688	P .697 .310 .091	Labe	
broad < time < agre < inte < kinerja <	sam sam sam sam sam	Estimate 1.000 6.289 220 .453 .317	S.E. 16.128 .217 .269 .256	C.R. .390 -1.016 1.688 1.239	P .697 .310 .091 .215	Labe	

Lihat pada angka Regression menunjukkan bahwa sam dan kompetisi tidak mempengaruhi kinerja. Nilai P (Sig.) sam ke kinerja dan kompetisi ke kinerja di atas 0,05.

Correlations:	(Group	number	1 -	Default	: model)
----------------------	--------	--------	-----	---------	----------

		Estimate
sam <>	kompetisi	047

Korelasi antara variabel sam dan kompetisi sebesar -0,047 di bawah 0,5 dan negatif. Hal ini menunjukkan bahwa korelasi antara sam dan kompetisi rendah dan negatif.

Latihan Soal Amos

Buatlah model struktural seperti di bawah dengan data dari file excel loyalty. Buatlah hipotesis alternatif dan hasil pengujian!

Praktikum 10

Stefany adalah seorang entrepreneur yang baru merintis usaha butik miliknya. Dalam mengekspansi bisnisnya, Stefany juga menjual produknya melalui platform E-Commerce. Beberapa bulan kemudian, Stefany ingin menguji apakah **Penjualan Offline dan Penjualan Online dapat mempengaruhi Profitabilitas** butiknya atau tidak. Penjualan Online yang dilakukan Stefany terbagi dalam 3 platform yaitu **Shopee, Tokopedia, dan Lazada.** Berikut adalah data yang diperoleh oleh Stefany:

Responden	Profitabilitas	Offline	Shopee	Tokopedia	Lazada
1	5	5	4	1	1
2	5	2	2	5	1
3	2	3	4	4	2

4	3	4	5	3	5
5	1	1	5	5	3
6	3	2	4	2	2
7	4	2	4	3	5
8	5	4	3	2	4
9	3	5	1	5	1
10	2	5	4	1	3
11	5	2	5	1	5
12	1	1	3	4	1
13	3	2	5	2	5
14	4	1	1	4	3
15	1	2	5	5	4
16	3	4	4	3	3
17	5	2	1	5	1
18	1	3	3	1	5
19	2	4	2	4	4
20	1	5	5	1	2
21	2	5	5	3	3
22	4	3	5	3	4
23	5	5	2	5	2
24	3	3	3	4	2
25	1	3	4	3	1

KETERANGAN:

- 1 = Sangat Rendah
- 2 = Rendah
- 3 =Sedang
- 4 = Tinggi
- 5 = Sangat Tinggi

Input data di **Excel** lalu lakukan import data pada **Amos**. Kemudian lakukan perintah-perintah di bawah ini dengan menggunakan alpha 5%:

- 1. Gambarkan model penelitian dalam penelitian tersebut!
- 2. Lakukan uji F!
- 3. Lakukan uji validitas dan uji reliabilitas serta berikan masukan untuk peneliti!
- 4. Lakukan uji t!
- 5. Simpan data dan output dengan nama HasilPrak10 di Local Disc D

BAB XI

STRUCTURAL EQUATION MODELLING (WARP-PLS)

Apa itu Structural Equation Modeling (SEM)?

SEM merupakan salah satu teknik analisis multivariat yang digunakan untuk menganalisis sejumlah variabel secara simultan atau serempak. Teknik analisis multivariat lain seperti analisis regresi dan analisis diskriminan, hanya dapat menguji satu relasi tunggal dalam sekali uji. Demikian pula terhadap analisis varian seperti ANOVA, MANOVA maupun analisis kanonikal, walaupun keduanya memungkinkan untuk melakukan analisis terhadap sejumlah variabel dependen, namun hanya dapat menganalisis satu tingkat hubungan antara variabel-variabel independen terhadap variabel dependen dalam sekali uji. Dachlan (2-14)

Kelebihan SEM

1. SEM mampu menguji model penelitian yang kompleks secara simultan.

Gambar 1.1. Relasi antar variabel: Model Pengukuran dan Model structural

Gambar 1.1 menunjukan relasi antar sejumlah variabel dalam model *co-creation intention*. SEM menganalisis relasi variabel-variabel (indikator) kenyamanan kelompok, perhatian kelompok, dan bantuan kelompok terhadap variabel (laten) *social support*. Model relasi ini disebut dengan Model Pengukuran. SEM akan menguji secara serempak pengaruh variabel *social support* yang dikombinasikan dengan variabel *social commerce value* dan *social commerce information sharing* terhadap variabel *brand engagement*, dan juga sekaligus menguji pengaruh *brand engagement* terhadap variabel *co-creation intention*. Model relasi antar variabel-variabel laten ini dinamakan dengan Model Struktural.

Gambar 1.2. Gambar Brand Equity Relationship

Perhatikan gambar diatas. Model penelitian *brand equity relationship* (BER) dalam Gambar 2.2 menampilkan hubungan antara *variabel country of origin image* (COI), *Brand Awareness* (BA), *Brand Distinctives* (BD), *Brand Loyalty* (BL) dan *Brand Equity* (BE). Untuk menguji model BER kita dapat menggunakan analisa jalur (path analysis) dengan teknik regresi berganda. Namun demikian, jika kita lakukan hal ini, maka analisis jalur tersebut harus dilakukan secara bertahap, tidak dapat secara serempak. Kita harus menggunakan beberapa persamaan regresi dan mengestimasinya secara bertahap. Hal ini dilakukan karena analisis regresi terbatas hanya kepada satu variabel dependen saja. Berdasarkan gambar diatas, maka tiga buah persamaan regresinya menjadi:

$$BD = a_1 + b_1 COI + b_2 BA + e_1$$

BL = $a_2 + b_3 COI + b_4 BA + b_5 BD + e_2$
BE = $a_3 + b_6 BD + b_7 BL + e_3$

Kita tidak dapat menggunakan analisis jalur secara bertahap tersebut untuk menguji model secara keseluruhan. Dalam Gambar 2.2, variabel BD dapat berfungsi sebagai variabel independen maupun dependen. Jika model penelitian tersebut dilakukan dengan menggunakan analisis SEM, maka kita mampu melakukan estimasi model secara serempak atau simultan sehingga lebih tepat digunakan dalam pengujian teori.

Dalam analisis regresi, kita dapat menguji hubungan dependensi antara satu atau beberapa variabel independen terhadap variabel dependen. Perlu dipahami bahwa variabel dependen maupun independen dalam analisis regresi haruslah merupakan variabel observed. Bagaimana jika variabel yang kita teliti merupakan variabel laten? Sebagai contoh jika kita hendak menguji, apakah kepuasan pelanggan mempengaruhi loyalitas merek?

Gambar 1.3. Diagram jalur regresi linier sederhana dengan variabel laten

Misalkan variabel laten kepuasan pelanggan (X) diukur dengan indikator: Pembelian ulang (X1), Besarnya Pembelian (X2), dan WOM Positif (X3). Sedangkan variabel Loyalitas merek (Y) diukur dengan indikator: tetap membeli walaupun ada yang lebih murah (Y1) dan tetap membeli walaupun ada produk serupa dengan fitur lebih baik (Y2).

Untuk dapat melakukan anallisis terhadap model tersebut, maka variabel laten tersebut harus diperlakukan bagaikan variabel observed, yakni dengan memberikan nilai atau skor. Nilai ini dapat diperoleh dari penjumlahan atau rata-rata nilai variabel indikatornya.

Responden	X1	X2	Х3	Х
Resp 1	4	5	3	4.00
Resp 2	4	4	5	4.33
Resp 3	3	4	4	3.67

Tabel 1.1 Memberi nilai variabel laten X dengan rata-rata nilai indikator

Setelah diberikan nilai (bagaikan variabel *observed*), maka analisis regresi seperti biasa dilakukan untuk variabel kepuasan pelanggan (X) dan Loyaitas merek (Y), namun perlu diingat bahwa kita harus melakukan uji validitas dan reliabilitas terlebih dahulu untuk semua indikator yang mengukur masing-masing variabel latennya.

Kesimpulannya adalah, dalam analisis regresi, jika terdapat variabel laten (*unobserved*) maka variabel laten tersebut harus diberi skor terlebih dahulu, setelah ada nilainya, maka tidak tepat lagi untuk dikatakan sebagai variabel laten. Hal ini sangat berbeda jika kita menguji hubungan dependensi antar variabel laten dengan menggunakan SEM. Jika menggunakan SEM, maka variabel laten tersebut tidak perlu diberi nilai terlebih dahulu, dengan kata lain sepenuhnya tetap sebagai variabel laten. Hal inilah yang menyebabkan analisis SEM sering disebut dengan Latent Variable Analysis.

Sama halnya dengan analisis Jalur (*Path Analysis*). Analisis jalur memungkinkan pengujian terhadap relasi kompleks dengan sekali uji. Namun perlu diperhatikan bahwa analisis jalur tidak ditujukan untuk menemukan model hubungan dependensi atau sebab-akibat sebagaimana analisis regresi, melainkan hanya digunakan untuk menguji relasi teoritis hubungan antar variabel yang pada umumnya merupakan hubungan dependensi atau sebab akibat. Dengan kata lain, analisis jalur digunakan untuk menguji keeratan hubungan dependensi atau kausalitas antar variabel. Dalam analisis jalur, model hubungan antar variabelnya sudah ditentukan terlebih dahulu berdasarkan teori yang mendasarinya. Dachlan (2014)

2. SEM mampu menganalisis variabel yang tidak dapat diukur secara langsung (unobserved variables)

Pendekatan SEM

Terdapat dua buah pendekatan dalam SEM yaitu *Covariance-Based SEM* (CB-SEM) dan *Variance Based SEM* (PLS-SEM). Bagaimana panduan singkat dalam memilih CB SEM atau PLS SEM? Berikut adalah panduan singkatnya. Hair et al. (2017), Sholihin dan Ratmono (2020)

Tujuan Penelitian

Jika bertujuan menguji teori, konfirmasi teori, atau membandingkan berbagai alternatif teori gunakan CB SEM

Jika Penelitian bersifat eksploratoris atau perluasan teori yang ada gunakan PLS SEM Jika Bertujuan mengidentifikasi variabel determinan utama atau memprediksi konstruk tertentu gunakan PLS SEM

Spesifikasi Model Pengukuran

Jika terdapat konstruk formatif dalam model penelitian gunakan PLS SEM. Jika error term memerlukan spesifikasi tambahan seperti kovariansi gunakan CB SEM

Model Struktural

Jika model struktural relatif kompleks (banyak konstruk dan banyak indikator), gunakan PLS SEM

Jika terdapat hubungan nonrecursive (timbal balik) dalam model, gunakan CB SEM

Karakteristik Data dan Algoritma

Jika data kita memenuhi asumsi-asumsi CB SEM secara tepat seperti minimal ukuran sampel dan distribusi normal, pilihlah CB SEM. Jika tidak memenuhi gunakan PLS SEM

Pertimbangan Ukuran sampel:

Jika ukuran sampel relatif kecil, gunakan PLS SEM. Dengan data yang besar, hasil CB SEM dan PLS SEM relatif sama.

Ukuran sampel minimum untuk PLS SEM harus sama atau lebih besar dari (1) sepuluh kali dari jumlah indikator formatif terbesar yang digunakan untuk mengukur konstruk atau (2) sepuluh kali jumlah kalur struktural terbesar yang mengenai sebuah konstruk tertentu dalam model struktural.

Jika data tidak terdistribusi normal pada tingkatan tertentu, gunakan PLS SEM. Dalam kondisi distribusi normal, hasil CB SEM dan PLS SEM relatif sama namun hasil estimasi CB SEM sedikit lebih tepat.

Jika persyaratan CB SEM tidak terpenuhi (misalnya, spesifikasi model, identifikasi, non convergence, distribusi data), gunakan PLS SEM.

Evaluasi Model

Jika kita memerlukan skor variabel laten untuk analisis lebih lanjut, PLS SEM merupakan pendekatan terbaik.

Jika penelitian memerlukan indeks goodness of fit secara keseluruhan, gunakan CB SEM

Apa itu PLS-SEM?

Partial Least Square (PLS) adalah salah satu teknik *Structural Equation Modeling* (SEM) yang mampu menganalisis variabel laten, variabel indikator dan kesalahan pengukuran secara langsung. PLS-SEM merupakan integrasi antara analisis jalur (*Path Analysis*), analisis regresi, dan analisis faktor konfirmatori, sehingga PLS-SEM dapat dimanfaatkan untuk:

- 1. Memeriksa validitas dan reliabilitas instrumen (setara dengan analisis CFA)
- 2. Menguji model hubungan antar variabel laten (setara dengan analisis jalur)
- 3. Melakukan prediksi (setara dengan analisis regresi)

PLS-SEM diterapkan pada semua skala data, tidak banyak membutuhkan asumsi seperti normalitas data secara multivariat, ukuran sampel minimum, homokedastisitas, dan sebagainya, dapat bekerja secara efisien dalam ukuran sampel yang kecil dan model yang kompleks, tetapi juga dapat digunakan untuk mengkonfirmasi teori serta membangun hubungan yang belum ada landasan teorinya atau untuk pengujian proporsi. Hartanto (2019)

Tabel 1.3 Karakteristik Model PLS SEM

Jumlah item/indikator dalam setiap variabel laten/konstruk

Konstruk dapat diukur dengan satu atau banyak indikator. PLS SEM dapat menggunakan indikator lebih dari 50, sementara CB SEM tidak mampu. Indikator tunggal tidak menjadi masalah dalam PLS SEM.

Hubungan antara variabel laten/konstruk dan indikatornya

Model pengukuran reflektif dan formatif tidak masalah, sedangkan CB SEM hanya reflektif saja.

Kompleksitas model

Dapat mengestimasi model yang kompleks dengan banyak jalur

Jenis model struktural

Hanya mampu mengestimasi model satu arah (*recursive*), hubungan timbal balik (*nonrecursive*) tidak dapat estimasi, sedangkan CB SEM mampu mengestimasi model *nonrecursive*.

Sumber. Hair et al. (2017), Sholihin & Ratmono (2020)

Model Pengukuran Reflektif

Reliabilitas konsistensi internal: *composite reliability* dan cronbach alpha lebih besar daro 0.70 (dalam penelitian eksploratoris, 0.60 - 0.70 masih dapat diterima.

Validitas konvergen: loading indikator lebih besar dari 0.70

Validitas diskriminan: (1) akar kuadrat *average variance extracted* (AVE) lebih besar daripada korelasi antar konstruk, (2) *loading* indikator ke konstruk yang diukur lebih besar daripada loading ke konstruk lain (*cross-loadings* rendah)

Model Pengukuran Formatif

Bobot indikator (indicator weight) harus signifikan secara statistik. Multikolinearitas: Variance Inflation factor (VIF) lebih kecil dari 3.3

Model Struktural

Nilai koefisien determinasi (R-squared) 0.75; 0.50; 0.25 untuk setiap variabel laten endogen dalam model struktural dapat diinterpretasikan sebagai subtansial, moderat, dan lemah. Relevansi prediktif (predictive relevance): Nilai Q-squared lebih besar dari nol mengindikasikan bahwa variabel laten eksogen mempunyai relevansi prediktif pada variabel laten endogen yang dipengaruhi.

Ukuran Efek

Effect size dapat dikelompokan menjadi tiga kategori, yaitu lemah (0.02), medium (0.15) dan besar (0.35)

Sumber. Hair et al. (2017), Sholihin & Ratmono (2020)

Menurut cara mengukurnya, variabel dapat dikelompokan menjadi 2 jenis, yaitu: variabel observed atau measured dan variabel unobserved atau unmeasured.

Observed variable adalah variabel yang dapat diukur secara langsung untuk memperoleh data tanpa harus melalui indikator. Contohnya adalah berat badan dimana kita tidak memerlukan indikator berat badan melainkan hanya mengukurnya secara langsung menggunakan timbangan berat badan. Dalam analisis struktural observed variable sering juga disebut dengan variabel manifest, indikator atau variabel teramati. Umumnya variabel bidang keuangan dan variabel penelitian dalam bidang ilmu alam merupakan *observed variable*.

Unobserved variable adalah variabel yang tidak dapat diukur secara langsung. Untuk mengukurnya diperlukan sejumlah indikator atau variabel manifest berupa seperangkat pernyataan dalam suatu instrument (kuisioner) dengan skala tertentu. Contohnya adalah variabel kualitas layanan teller bank yang untuk mengukurnya diperlukan indikator seperti ketelitian, keramahan, dan kecepatan. Akan menjadi sulit dan hasilnya akan kurang bermakna jika pengukuran dilakukan secara langsung tanpa indikator. Berdasarkan hal inilah maka *unobserved variable* sering juga disebut dengan variabel laten, konstruk, konsep atau variabel tak teramati. Hampir semua penelitian dalam bidang ilmu sosial merupakan variabel laten.

Gambar 1.4 Variabel observed dan unobserved

Berdasarkan hubungan antar variabel dalam sebuah penelitian, maka variabel dapat dikelompokkan menjadi sebagai berikut:

Variabel independen adalah variabel yang nilainya tidak dipengaruhi atau tidak bergantung pada variabel lain. Dengan kata lain, variabel independen merupakan variabel yang mempengaruhi atau menjadi penyebab besar kecilnya nilai variabel yang lain. Variabel independen sering juga disebut sebagai variabel prediktor dan seringkali disimbolkan dengan huruf X.

Contoh: Pengaruh stres kerja terhadap kinerja pegawai. Dalam hal ini stres kerja merupakan variabel independen.

Variabel dependen adalah variabel yang nilainya dipengaruhi atau bergantung pada variabel lain. Variabel dependen merupakan variabel yang variasinya dipengaruhi oleh variasi variabel independen. Variabel dependen sering disebut dengan variabel kriteria dan dilambangkan dengan huruf Y.

Contoh: Pengaruh stres kerja terhadap kinerja pegawai. Dalam hal ini kinerja pegawai merupakan variabel dependen.

Variabel Mediasi adalah variabel antara yang dipengaruhi oleh variabel independen tetapi mempengaruhi variabel dependen.

Contoh: Pengaruh stres kerja terhadap kinerja pegawai di mediasi oleh variabel kemampuan analisa kognitif. Sekelompok ilmuwan memiliki perbedaan pendapat mengenai kesamaan varaibel mediasi dengan variabel intervening. Kelompok yang menganggap berbeda berpandangan bahwa variabel intervening ini ada tetapi tidak dapat diukur dan tidak dapat diteliti. Buku ini beranggapan variabel mediasi dan intervening sama.

Gambar 1.5 Variabel mediasi

Variabel Moderasi adalah variabel yang bersifat memperkuat atau memperlemah pengaruh variabel independen terhadap variabel dependen dan tidak dipengaruhi oleh variabel independen.

Contoh: Pengaruh stres kerja terhadap kinerja pegawai di moderasi oleh variabel karakter pimpinan. Karakter pimpinan dapat memperkuat atau memperlemah pengaruh stres kerja terhadap kinerja pegawai.

Gambar 1.6 Variabel Moderasi

Variabel eksogen dan Variabel endogen

Jika penelitian kita merupakan hubungan kausalitas yang melibatkan satu buah variabel independen dan variabel dependen, tentu akan sangat mudah menentukan mana yang merupakan variabel independen dan dependen. Sekarang coba perhatikan Gambar 1.5. Jika sudah melibatkan variabel mediating, manakah yang berhak disebut variabel independen dan mana yang dependen? Berikut adalah tuntunannya.

Jenis variabel	Definisi
Indonondon	Variabel yang mempengaruhi (ada tanda
independen	panah yang keluar dari variabel ini)
Denenden	Variabel yang tidak mempengaruhi (tidak ada
Dependen	tanda panah yang keluar dari variabel ini)
Fleegen	Variabel yang tidak dipengaruhi (tidak ada
Eksogen	tanda panah yang menuju ke variabel ini)
F unda and	Variabel yang dipengaruhi (ada tanda panah
Endogen	yang menuju ke variabel ini)

Tabel 1.5 Definisi jenis variabel

Gambar 1.7 Variabel Eksogen dan Endogen

Kita dapat menarik kesimpulan berdasarkan Tabel 1.5 bahwa setiap variabel eksogen pasti merupakan variabel independen, namun tidak berlaku sebaliknya. Demikian pula setiap variabel dependen pasti merupakan variabel endogen, namun tidak berlaku sebaliknya.

Konstruk Reflektif dan Formatif

Kita telah mempelajari apa yang dimaksud dengan variabel laten. Dalam melakukan penelitian, seorang peneliti seringkali dihadapkan kepada permasalahan bagaimana mengukur variabel laten atau konstruk tersebut. Sebagai upaya untuk mengukur variabel laten atau konstruk tersebut, peneliti akan mengembangkan indikator-indikator untuk mengukur konstruk tersebut. Upaya mengembangkan indikator ini harus mempertimbangkan dua buah tipe spesifikasi pengukuran, yaitu model pengukuran reflektif dan model pengukuran formatif.

Model indikator reflektif

Model indikator reflektif merupakan kondisi dimana indikator yang dapat mencerminkan variabel laten, jadi variabel laten seolah-olah mempengaruhi indikator. Hal ini terjadi karena model indikator reflektif mengasumsikan bahwa variasi nilai variabel laten merupakan fungsi dari indikator ditambah error. Model indikator reflektif menghendaki antar indikator saling berkorelasi satu sama lain. Apabila terjadi perubahan dalam konstruk tersebut, akan menyebabkan perubahan dalam indikator-indikatornya atau jika terjadi perubahan dari satu indikator maka akan berakibat pada perubahan indikator lainnya dengan arah yang sama, namun tidak akan berakibat mengubah makna variabel laten. Sebagai contoh, variabel laten kepuasan pelanggan dapat terefleksi dalam indikator-indikator mereferensikan produk kepada orang lain, kesediaan untuk membeli ulang, dan memberitakan wom positif di sosial media.

Ciri-ciri model indikator reflektif:

- 1. Arah hubungan dari variabel laten ke indikator
- 2. Menghitung error pada tingkat indikator
- 3. Seolah-olah mengamati akibatnya
- 4. Antar indikator diharapkan saling berkorelasi
- 5. Menghilangkan indikator tidak mengubah makna variabel laten

Harap diperhatikan oleh mahasiswa

Variabel laten yang indikatornya reflektif seringkali dicerminkan oleh indikator-indikator yang datanya bersifat persepsi, seperti motivasi, loyalitas, kepuasan, komitmen, dan lain-lain. Namun demikian hal ini tidak dapat dijadikan acuan 100%, yang seringkali dilakukan sebagai acuan hanya sekedar untuk memudahkan saja. Contohnya, variabel persepsi kualitas layanan dengan dimensi *tangible, empathy, reliability, responsibility* dan *assurance* semua dimensi diukur berdasarkan persepsi, akan tetapi model pengukuran tersebut bersifat formatif.

Model indikator Formatif

Model indikator formatif merupakan kondisi dimana indikator membentuk variabel laten, jadi indikator seolah-olah mempengaruhi variabel laten. Apabila salah satu indikator berubah tidak selalu diikuti perubahan indikator lainnya dalam satu konstruk, tetapi tetap berakibat mengubah makna variabel laten atau mengubah konstruknya. Hal ini menyebabkan model indikator formatif tidak memerlukan korelasi antar indikator sehingga pengujian internal konsistensi (alpha cronbach's) tidak diperlukan untuk menguji reliabilitas konstruk formatif. Indikator-indikator dalam konstruk formatif menjadi penyebab atau membentuk (*to form*) konstruk.

Contohnya, banyaknya dosen S-3, Fasilitas kelas yang lengkap, Internet yang cepat menjadi indikator formatif dari kepuasan terhadap TSM.

Gambar 1.8 Konstruk Reflektif dan Formatif

Outer Model dan Inner Model

PLS-SEM terdiri atas dua buah sub model yaitu model pengukuran (measurement model) atau lazim disebut dengan outer model dan model struktural (structural model) atau yang lazim disebut dengan inner model.

Gambar 1.9 Outer dan Inner model (Henseler, 2009)

Properti dalam diagram jalur PLS

Notasi-Notasi dalam Diagram jalur PLS

Notasi	Notasi	Keterangan
ξ	ksi	Variabel eksogen, digambarkan dalam bentuk
>		lingkaran/elips.
n	eta	Variabel endogen dan variabel mediasi, digambarkan dalam
-1		bentuk lingkaran/elips.
γ	gamma	Koefisien jalur pengaruh variabel eksogen terhadap
,	0	variabel endogen.
β	beta	Koefisien jalur pengaruh variabel mediasi terhadap variabel
,		endogen.
Y _{ij}	-	Indikator variabel eksogen.
X_{ij}	-	Indikator variabel endogen.
λ	lambda	Koefisien pengukuran indicator reflektif terhadap
		variabel laten (Loading Factor).
П	phi	Koefisien pengukuran indicator formatif terhadap
	1	variabel laten (weight).
δ	delta	Error pengukuran variabel eksogen.
ε	epsilon	Error pengukuran variabel endogen.
ζ	zeta	Error pada variabel endogen

Tabel 1.6 Notasi-Notasi dalam Diagram jalur PLS

Evaluasi Model dalam PLS SEM memiliki dua tahapan. Tahap pertama yaitu evaluasi model pengukuran atau outer model yang dilakukan untuk menilai validitas dan reliabilitas dari indikator-indikator pembentuk konstruk laten. Tahap kedua adalah evaluasi model struktural atau inner model yang bertujuan untuk memprediksi hubungan antara variabel laten dengan melihat seberapa besar variance yang dapat dijelaskan dan untuk mengetahui signifikansi dari P-value.

EVALUASI MODEL PENGUKURAN

Evaluasi model pengukuran dengan indikator formatif

Evaluasi model pengukuran pada indikator formatif diuji berdasarkan *substantive content*-nya, yaitu dengan membandingkan besarnya *relative weight* dan melihat signifikansinya. Jika nilai T-statistik pada indikator formatif bernilai \geq T tabel (1.96) maka dapat dinyatakan indikator tersebut valid.

Evaluasi model pengukuran indikator reflektif

Validitas konstruk.

Validitas konstruk (*construct validity*) terbagi menjadi dua yaitu validitas konvergen (*convergent validity*) dan validitas diskriminan (*discriminant validity*).

1. Convergent Validity

Convergent Validity menunjukan tingkatan sebuah indikator berkorelasi positif dengan indikator alternatif untuk konstruk yang sama. *Convergent validity* bertujuan untuk menguji korelasi antar item/indikator untuk mengukur konstruk.

a. Loading Faktor.

Sebuah indikator dinyatakan memenuhi *convergent validity (rule of thumb)* apabila nilai loading faktornya ≥ 0.70 . Namun demikian, untuk penelitian yang bersifat confirmatory nilai loading yang berkisar antara 0.60 - 0.70 masih dapat diterima. Artinya bahwa variabel laten minimal dapat menjelaskan variansi setiap indikator sebesar 60%.

b. Average Varianve Extracted (AVE)

AVE adalah rata-rata nilai varian keseluruhan indikator yang diekstraksi dari variabel laten, merupakan rata-rata loading yang dikuadratkan dari indikator-indikator konstruk. Sebuah indikator dinyatakan memenuhi *convergent validity* bila nilai AVE \geq 0.50. Artinya bahwa rata-rata sebuah konstruk menjelaskan lebih dari separuh varian indikator-indikatornya.

2. Discriminant Validity

Discriminant Validity menunjukan tingkatan seberapa besar sebuah variabel laten atau konstruk benar-benar berbeda dengan konstruk lain sebagaimana ditunjukan oleh hasil penelitian empiris. Validitas discriminant bertujuan untuk menguji item/indikator dari dua konstruk yang seharusnya tidak berkorelasi tinggi.

a. Cross-loadings

	SS	SCIS	SCV	BE	CCI
SS1	0.834	0.006	-0.219	0.131	-0.008
SS2	0.773	0.144	-0.500	-0.267	0.087
SS3	0.832	-0.127	0.799	-0.254	-0.031
SS4	0.824	-0.014	-0.116	0.374	-0.043

Tabel 1.7 Analisis Cross-loading

Sebuah indikator dinyatakan memiliki discriminant validity apabila loading faktor yang mengukur variabel latennya lebih besar dari nilai cross loading (korelasi indikator dengan variabel laten lainnya)

Berdasarkan Tabel 1.7 kita mengetahui bahwa indikator SS1 yang mengukur variabel laten SS memiliki nilai loading sebesar 0.834, yang lebih tinggi dari nilai loading ke variabel laten lainnya yaitu SCIS sebesar 0.006, SCV sebesar -0.219, BE sebesar 0.131 dan CCI sebesar -0.008. Jika nilai loading terhadap konstruk lain melebihi loading terhadap konstruk yang diukur, maka menunjukan adanya masalah dalam analisis diskriminan. Misalnya dalam contoh diatas jika nilai loading SCIS sebesar 0.987 yang lebih besar daripada nilai loading SS1 atas SS sebesar 0.834 maka dipastikan indikator SS1 tersebut tidak memenuhi discriminant validity.

b. *Fornell-larcker criterion* atau memperbandingkan akar AVE dengan korelasi antar variabel laten/konstruk.

Sebuah indikator dinyatakan memiliki *discriminant validity* apabila nilai akar AVE setiap variabel laten lebih besar dibandingkan nilai korelasi antar variabel laten. Hal ini berarti indikator yang mengukur suatu variabel hanya dapat mengukur variabel tersebut.

Reliabilitas Konstruk

Pengujian reliabilitas konstruk dilakukan dengan menggunakan ukuran reliabilitas konstruk (*composite reliability*) dan/atau Cronbach's alpha. Kriteria pengujian adalah jika nilai composite reliability dan cronbach's alpha \geq 0.70 maka dapat dinyatakan bahwa konstruk telah reliable.

EVALUASI MODEL STRUKTURAL

R-Square (R²)

R-square menunjukkan berapa persentase variansi konstruk endogen/kriterion dapat dijelaskan oleh variabel eksogen yang memengaruhinya. Semakin tinggi *R-Square* maka model semakin baik. *R-square* hanya terdapat pada konstruk endogen. *R-square* berkisar dari 0 hingga 1, dengan nilai yang lebih tinggi menunjukkan kekuatan penjelas yang lebih besar. Sebagai pedoman, nilai *R-square* sebesar 0.75, 0.50, dan 0.25 dapat dianggap substansial, sedang, dan lemah (Henseler et al., 2009; Hair et al., 2011).

Prediction Relevance Test (Q-square/Q²)

Q-square merupakan ukuran nonparametric yang diperoleh melalui algoritma *blindfolding*. *Q-square* digunakan untuk penelitian validitas prediktif atau relevansi dari sekumpulan variabel laten prediktor pada variabel kriterion. *Q-square* analog dengan *R-square* namun hanya dapat diperoleh melalui *resampling*. Model dengan validitas prediktif harus memiliki nilai *Q-square* lebih besar dari nol. Di sisi lain, jika *Q-square* kurang dari 0, itu berarti model tersebut tidak memiliki relevansi prediktif. Selain itu, nilai *Q-square* adalah 0.15, 0.02, 0.35, sehingga menggambarkan relevansi sedang, kecil, dan besar untuk konstruksi endogen tertentu (Hair et al., 2017).

No	Model Fit and Quality Indices	Fit Criteria
1	Average Path Coefficient (APC)	P < 0.05
2	Average R-Squared (ARS)	P < 0.05
3	Average Adjusted R-Squared (AARS)	P < 0.05
4	Average Block VIF (AVIF)	Acceptable if \leq 5, ideally \leq 3.3
5	Average Full Collinearity VIF (AFVIF)	Acceptable if \leq 5, ideally \leq 3.3
6	Tenenhaus GoF (GoF)	Small ≥ 0.1 , Medium ≥ 0.25 , Large ≥ 0.36

Tabel 1.8 Model Fit dan Quality Indices

7	Sympson's Paradox Ration (SPR)	Acceptable if ≥ 0.7 , ideally = 1
8	<i>R-Squared Contribution Ratio</i> (RSCR)	Acceptable if ≥ 0.9 , ideally = 1

Pengujian Hipotesis (Signifikansi) Pengaruh langsung

Pengujian signifikansi model struktural diginakan untuk menguji pengaruh variabel eksogen terhadap variabel endogen. Pengujian hipotesis (signifikansi) pada PLS SEM dilakukan menggunakan statistik uji t dengan menerapkan metode resampling (*bootstrapping*) agar didapatkan statistik uji t yang stabil. Penerapan metode resampling tidak memerlukan distribusi normal dan jumlah sampel yang besar (minimal 30 sampel).

Kriteria pengujian \rightarrow apabila T statistik \geq T tabel atau p-value \leq *level of significant* (alpha) maka dinyatakan ada pengaruh signifikan variabel eksogen terhadap variabel endogen dan sebaliknya.

Latihan WarpPLS dengan menggunakan design penelitian seperti pada Gambar 1.1

A. Membuka software Warp PLS

» Klik Proceed to use software

	58.0	
License holder: Trial license (3 months) Type of license: Trial license (3 months) License start date: 20-Jul-2022 License end date: 18-Oct-2022 *** Trial license current; please proceed to	use the software, or renew the license now using the form below.	
To "renew" your license, simply purchase a www.warppis.com	new license. To do that, or view product updates, please visit the site below.	
License type:	Trial license (3 months)	~
Enter the name of the individual o	rorganizational license holder:	
Trial lineanse (2 months)		
mai license (3 monuis)		
Enter the new license number:		
Enter the new license number:	Ise details Proceed to use software	

B. Membuat lembar kerja baru

» Klik Proceed to step 1

» Klik Create project file

» Pilih lokasi yang digunakan untuk menyimpan, Kemudian isikan file name misalkan "Latihan 1" » save » ok

	ne of a file to save your work.		×		
Save in:	Modul warppls	🗢 🗈 💣 📰 •			
4	Name	Date modified	Туре		
ck access	Latihan 1	8/6/2022 9:57 PM	Micro		
Desktop					
Libraries				Open project file	
This PC				Create project file	
2					
Network				Go back	
	File name: Latihan 1	• <u>s</u>	ave		
	Save as type: All Files	<u>→</u> Ca	ncel		

» Klik Proceed to step 2

Explore	e Help		
Weld Java. This variou	come to WarpPLS 8.0, a software developed by Ned Kock using MATLAB, C++ and software will help you conduct a structural equation modeling (SEM) analysis using us composite-based and factor-based methods, including the "warped" partial least	Proceed to Step 1	Proceed to Step 4
squar Ste Ste	res (PLS) method. The analysis will be conducted through the following steps: p 1: Open or create a project file to save your work. p 2: Read the raw data used in the SEM analysis. p 3: Pre-process the data for the SEM analysis.	Proceed to Step 2	Proceed to Step 5
Ste Ste Pres are gr For n	p 4: Define the variables and links in the SEM model. p5: Perform the SEM analysis and view the results. ss a "Proceed to Step" button when you are ready to continue. (Unavailable steps rayed out; they will be made available as you progress through the steps.) more help, citck on the "Help" menu option at the top of this window.	Proceed to Step 3	Viewisave analysis results
Status	s of SEM analysis steps (* = completed):		
*Step Proje Path: -Step Raw Path: -Step -Step -Step	1: Open/create project tile ct file : Lathan1 D Modul warphis\ 2: Read raw data data file: Not selected Not selected 3: Pre-process data 4: Define variables/links in SEM model 5: Perform/ees SEM analysis/results	No model	defined yet
Step			

» Klik Read from file

» Pilih nama file data mentah saudara. Warppls secara default akan mencari file data mentah dengan "files of type (*.txt) jika anda menyimpan file data dalam bentuk file exel pastikan file exel tersebut hanya memiliki satu buah sheet dan pastikan semua isian responden dalam setiap indikator pengukuran sudah memiliki nama dalam setiap kolomnya. (penamaan nama indikator di sarankan disingkat)

Look IX: Modul warpple Mare Date modified Type No items match your search. Read from file Read from file Read from file Go back Go back	elect the ray	w data file						×	-						
Name Date modified Type No items match your search. No items match your search. Istop Read from file Tarlies Go back	Look in:	Modul warpp	ols		•	+ 🗈 💣	-								
Read from file Read from clipboard Read from clipb	k access	Name	^	No items mate	h your se	Date modifie arch.	d	Туре							
Read from clipboard	esktop											Read fr	rom file		
is PC etwork File name: File name: File of type: Ttxt) Cancel	braries											Read from	clipboard		
Awok	nis PC											Got	ack		
File name: Copen Files of type: ("txt) Cancel	twork														
Files of type: (* 1xt) Cancel		File name:				•	()pen							
		Files of type:	(*.txt)			•	C	ancel							

elect the rav	w data file		×		
Look in:	Modul warppis	+ 🗈 💣 🖬 •			
4	Name	Date modified	Туре		
ick access	C Latihan 1	8/6/2022 9:57 PM	Micro		
				Read from file	
lesktop					
Libraries				Read from clipboard	
This PC				Goback	
3-				GUBACK	
Network					
	File name: Latihan 1	• <u>c</u>)pen		

» Jika file anda exel pastikan files of typenya "All Files"

» Klik ok

You are now in Step 2: Read the raw data used in the SEM analysis.	
Daw data can be read from a file or from the clinboard	
Raw uata can be read nom a me or nom me cipboard.	
If the source of the labels is a file, its type can be any of the following:	Duri fun Et
.txt: A tab-delimited, or comma-delimited text file.	Read from the
	>
Ok	
Do not select any options other th As soon as the file import wizard close	nen "Next" and "Finish" in the wizard.
Do not select any options other th As soon as the file import wizard close	nen "Next" and "Finish" in the wizard. ses, a table will show the imported data.
If there are serious problems with the data (e.g., lack o	of column headings), correct the source file and try again.
Fless Ok	to continue.

» Klik Next

You are now in Step 2: Re	ad the raw data used i	in the SE	M analysis														
Raw data can be read fro	m a file or from the clip	pboard.															
If the source of the labels .xls or xlsx: An Excel file .txt: A tab-delimited, or c	s is a file, its type can b , comma-delimited text f	e any of ile.	the followi	ng:									R	tead from	n file		
For Excel workbooks wi either the first in the work The file must have the n	Import Wizard Preview of D:\Modul wa	arools\La	tihan 1.xlsx	4							-	0	×	om cli	pboard		
the first row, and the valu	Worksheets	data	textdata	colheader	s									-			
Devention and the set of the set	O Sheet1		1	2		3		4		5		6	7	o bac	k		
you are ready to read the	Sheet2 (Blank)	1		5	5		4		6		4	4					
Press the "Go back" but	Sheet3 (Blank)	2		6	6		5		6		5	5		1			
For more help, click on t	C Sheetd (Plank)	4		6	6		5		7	_	7	7	_				
	O Sheet4 (Blank)	5		7	5		5		6		6	4					
		6		6	6		5		6		5	6					
		7		7	6		5		7		7	6					
		9		7	6		7		7		5	6					
		10		6	6		6		7		5	4	_				
		11		6	5		5		6		6	5					
		12		7	6		5		б	_	3	5					
		13		5	5		7		6		5	6					
		14		5	4	_	5		5		6	5					
		16		7	6		5		5		4	6					
	Help			< Back		Next >	Fi	nish	Ge	nerate M	ATLAB c	ode	Cancel	5			

» Klik Finish

Import	Wizard							\times
Select varia	ables to import us	sing checkb	oxes					
O Create v	variables matchir	ng preview.						
O Create v	vectors from each	h column u	sing column nam	nes.				
O Create	vectors from eacl	h row using	row names.					
Variables in	D:\Modul warpp	ols\Latihan	1.xlsx, Worksheet	: Sheet1				
Import	Name 🔺	Size	Bytes	Class	No variable selected for preview.			
	Colhead	1x16	1068	cell				
	data	352x16	45056	double				
		1110	1000	Cell				
Help			< Back	Ne	xt > Finish rate MA1	LAB code	Can	cel

» klik ok

» Klik Yes

Does t	he data look	correct?						Yes			No				
								\land							
	SS1	SS2	SS3	SS4	SCV1	SCV2	SCV	SCI1	SCI2	SCI3	BE1	BE2	BE3	CI1	CI
1	5.000	5.000	4.000	6.000	4.000	4.000	5.000	000	6.000	5.000	3.000	6.000	6.000	6.000	6.000
2	6.000	6.000	5.000	6.000	5.000	5.000	5.000	000	5.000	6.000	4.000	6.000	5.000	5.000	6.000
3	6.000	5.000	6.000	6.000	5.000	5.000	5.000	000	6.000	6.000	5.000	6.000	5.000	6.000	5.000
4	6.000	6.000	5.000	7.000	7.000	7.000	6.000	5.000	5.000	4.000	4.000	5.000	4.000	5.000	6.000
5	7.000	5.000	5.000	6.000	6.000	4.000	5.000	6.000	7.000	6.000	5.000	6.000	6.000	5.000	7.000
6	6.000	6.000	5.000	6.000	5.000	6.000	5.000	6.000	6.000	6.000	4.000	5.000	6.000	5.000	6.000
7	7.000	6.000	5.000	7.000	7.000	6.000	7.000	6.000	7.000	7.000	5.000	7.000	6.000	7.000	6.000
8	7.000	7.000	6.000	6.000	6.000	7.000	6.000	7.000	7.000	6.000	5.000	6.000	6.000	5.000	7.000
9	7.000	6.000	7.000	7.000	5.000	6.000	6.000	7.000	7.000	6.000	4.000	5.000	5.000	6.000	7.000
10	6.000	6.000	6.000	7.000	5.000	4.000	4.000	4.000	5.000	5.000	4.000	4.000	5.000	4.000	5.000
11	6.000	5.000	5.000	6.000	6.000	5.000	6.000	6.000	6.000	7.000	5.000	6.000	5.000	5.000	6.000
12	7.000	6.000	5.000	6.000	3.000	5.000	6.000	6.000	6.000	5.000	5.000	6.000	6.000	4.000	6.000
13	5.000	5.000	7.000	6.000	5.000	6.000	5.000	6.000	7.000	7.000	5.000	6.000	5.000	4.000	6.000
14	3.000	4.000	5.000	5.000	4.000	5.000	5.000	5.000	6.000	5.000	4.000	5.000	4.000	4.000	5.000
15	5.000	5.000	6.000	6.000	6.000	5.000	6.000	6.000	7.000	7.000	6.000	7.000	6.000	6.000	7.000
16	7.000	6.000	5.000	5.000	4.000	6.000	5.000	6.000	7.000	6.000	5.000	6.000	6.000	6.000	7.000
17	6.000	6.000	5.000	5.000	6.000	5.000	5.000	6.000	5.000	6.000	5.000	6.000	6.000	6.000	7.000
18	5.000	5.000	6.000	6.000	5.000	6.000	5.000	6.000	6.000	6.000	4.000	6.000	5.000	5.000	5.000
19	5.000	6.000	5.000	5.000	4.000	5.000	4.000	4.000	5.000	4.000	3.000	5.000	4.000	4.000	5.000
20	7.000	6.000	6.000	5.000	6.000	5.000	5.000	5.000	4.000	5.000	5.000	5.000	4.000	5.000	6.000
21	7.000	6.000	5.000	7.000	7.000	5.000	4.000	4.000	6.000	4.000	4.000	6.000	5.000	7.000	6.000
22	5.000	6.000	6.000	7.000	5.000	5.000	5.000	6.000	5.000	5.000	4.000	5.000	4.000	5.000	6.000
23	6.000	5.000	5.000	7.000	7.000	7.000	4.000	5.000	5.000	4.000	5.000	7.000	6.000	6.000	7.000
24	6.000	6.000	7.000	6.000	6.000	6.000	5.000	6.000	7.000	6.000	4.000	6.000	6.000	6.000	7.000
25	7.000	6.000	6.000	7.000	7.000	6.000	7.000	7.000	6.000	7.000	5.000	6.000	6.000	5.000	6.000
26	5.000	4.000	4.000	5.000	4.000	4.000	5.000	6.000	7.000	6.000	4.000	6.000	5.000	6.000	6.000
27	7.000	6.000	5.000	7.000	7.000	6.000	7.000	6.000	7.000	7.000	5.000	7.000	6.000	7.000	6.000
28	7 000	6.000	7 000	6 000	6 000	6 000	7 000	7 000	6 000	6 000	6 000	7 000	6 000	6 000	7 000

» Klik Proceed to step 3

	plore Settings	Help			
V	Welcome to Wa	rpPLS 8.0, a software developed by Ned Kock using MATLAB, C++ and			
T	ava. This software w arious composi	vill help you conduct a structural equation modeling (SEM) analysis using te-based and factor-based methods, including the "warped" partial least	Proceed to Step 1	Proceed to Step 4	
so	quares (PLS) m Step 1: Open o Step 2: Read th Step 3: Pre-pro	ethod. The analysis will be conducted through the following steps: r create a project file to save your work. le raw data used in the SEM analysis. ccess the data for the SEM analysis.	Proceed to Step 2	Proceed to Step 5	
	Step 4: Define 1 Step 5: Perform	the variables and links in the SEM model. n the SEM analysis and view the results.	Proceed to Step 3	ew/save analysis results	
F	For more help, c	lick on the "Help" menu option at the top of this window.			1
st	tatus of SEM and	alysis steps (* = completed):			
22 1 20 1 20 12 10 10 10 10 10 10 10 10 10 10 10 10 10	tatus of SEM and Step 1: Open/cre Project file: Latih Path: D'Modul w Step 2: Read raw taw data file: La Path: D'Modul w	alysis steps (* = completed): ate project file ant arpolsk dda bhan folsk arpolsk dda arpolsk dda arpolsk dda dda arpolsk dda dda dda dda dda dda dda dd	No mode	I defined yet	

» Klik Pre-process data

» Klik ok

.0 - Pre-processing the data		20 - 2	0
ta pre-processing completed; press "Ok" button to close window.	Ok		
e-processing data results:			
tecking for and correcting missing values Itssing data imputation algorithm used: Arithmetic Mean Imputation)			
lo missing values found.			
to columns with zero variance found.			
iecking for and correcting identical column names Io identical column names found.			
tecking for rank problems Io rank problems found.			
andardizing data All columns (indicators) standardized.			

» Klik Ok

» Klik Yes

loes	the data look	correct?							Yes				No		
_	SS1	\$\$2	SS3	SS4	SCV1	SCV2	SCV3	SCI1		SCI3	BE1	BE2	BE3	CI1	CI
1	-1.710	-0.597	-1.409	-0.142	-1.856	-1.619	-0.684	-0.758	0.268	-0.694	-2.353	0.093	0.985	1.084	0.180
2	-0.375	0.583	-0.342	-0.142	-0.764	-0.607	-0.684	-0.758	-0.843	0.350	-1.231	0.093	-0.290	0.021	0,180
3	-0.375	-0.597	0.724	-0.142	-0.764	-0.607	-0.684	-0.758	0.268	0.350	-0.108	0.093	-0.290	1.084	-1.062
4	-0.375	0.583	-0.342	1.137	1.421	1.418	0.358	-0.758	-0.843	-1.737	-1.231	-1.119	-1.565	0.021	0.180
5	0.959	-0.597	-0.342	-0.142	0.329	-1.619	-0.684	0.412	1.379	0.350	-0.108	0.093	0.985	0.021	1.422
6	-0.375	0.583	-0.342	-0.142	-0.764	0.405	-0.684	0.412	0.268	0.350	-1.231	-1.119	0.985	0.021	0.180
7	0.959	0.583	-0.342	1.137	1.421	0.405	1.400	0.412	1.379	1.393	-0.108	1.305	0.985	2.146	0.180
8	0.959	1.764	0.724	-0.142	0.329	1.418	0.358	1.582	1.379	0.350	-0.108	0.093	0.985	0.021	1.422
9	0.959	0.583	1.790	1.137	-0.764	0.405	0.358	1.582	1.379	0.350	-1.231	-1.119	-0.290	1.084	1.422
10	-0.375	0.583	0.724	1.137	-0.764	-1.619	-1.725	-1.928	-0.843	-0.694	-1.231	-2.331	-0.290	-1.041	-1.062
11	-0.375	-0.597	-0.342	-0.142	0.329	-0.607	0.358	0.412	0.268	1.393	-0.108	0.093	-0.290	0.021	0.180
12	0.959	0.583	-0.342	-0.142	-2.949	-0.607	0.358	0.412	0.268	-0.694	-0.108	0.093	0.985	-1.041	0.180
13	-1.710	-0.597	1.790	-0.142	-0.764	0.405	-0.684	0.412	1.379	1.393	-0.108	0.093	-0.290	-1.041	0.180
14	-4.378	-1.777	-0.342	-1.420	-1.856	-0.607	-0.684	-0.758	0.268	-0.694	-1.231	-1.119	-1.565	-1.041	-1.062
15	-1.710	-0.597	0.724	-0.142	0.329	-0.607	0.358	0.412	1.379	1.393	1.014	1.305	0.985	1.084	1.422
16	0.959	0.583	-0.342	-1.420	-1.856	0.405	-0.684	0.412	1.379	0.350	-0.108	0.093	0.985	1.084	1.422
17	-0.375	0.583	-0.342	-1.420	0.329	-0.607	-0.684	0.412	-0.843	0.350	-0.108	0.093	0.985	1.084	1.422
18	-1.710	-0.597	0.724	-0.142	-0.764	0.405	-0.684	0.412	0.268	0.350	-1.231	0.093	-0.290	0.021	-1.062
19	-1.710	0.583	-0.342	-1.420	-1.856	-0.607	-1.725	-1.928	-0.843	-1.737	-2.353	-1.119	-1.565	-1.041	-1.062
20	0.959	0.583	0.724	-1.420	0.329	-0.607	-0.684	-0.758	-1.953	-0.694	-0.108	-1.119	-1.565	0.021	0.180
21	0.959	0.583	-0.342	1.137	1.421	-0.607	-1.725	-1.928	0.268	-1.737	-1.231	0.093	-0.290	2.146	0.180
22	-1.710	0.583	0.724	1.137	-0.764	-0.607	-0.684	0.412	-0.843	-0.694	-1.231	-1.119	-1.565	0.021	0.180
23	-0.375	-0.597	-0.342	1.137	1.421	1.418	-1.725	-0.758	-0.843	-1.737	-0.108	1.305	0.985	1.084	1.422
24	-0.375	0.583	1.790	-0.142	0.329	0.405	-0.684	0.412	1.379	0.350	-1.231	0.093	0.985	1.084	1.422
25	0.959	0.583	0.724	1.137	1.421	0.405	1.400	1.582	0.268	1.393	-0.108	0.093	0.985	0.021	0.180
26	-1.710	-1.777	-1.409	-1.420	-1.856	-1.619	-0.684	0.412	1.379	0.350	-1.231	0.093	-0.290	1.084	0.180
27	0.959	0.583	-0.342	1.137	1.421	0.405	1.400	0.412	1.379	1.393	-0.108	1.305	0.985	2.146	0.180
28	0.959	0.583	1.790	-0.142	0.329	0.405	1.400	1.582	0.268	0.350	1.014	1.305	0.985	1.084	1.422
C. Membuat Desain Konstruk Variabel Laten

» Klik Proceed to step 4

» Klik Define SEM Model

You are now in Step 4: De	efine the variables and links in the SEM model.			
When you press the "D that will allow you to inte	WarpPLS 8.0 - Create or edit the SEM model	- 0	×	
To define a SEM model	Model options Latent variable options Direct i k options Moderating link options Help		_	
You should start by def	(You she Edit latent variable ratio and the state of the menu options above to perform a task. (You she Edit latent variable ratio and the state of the menu options. You can then drag and drop them them.)	n, and create links among		
combinations of one or file).	Delete latent variable Move latent variable			
You should then create moderating links between				
Press the "Define SEM				
Press the "Go back" bi For more help, click on				

» Klik Latent variable options » create latent variable

» Saat timbul "*select location and click on it to create latent variable*" silahkan anda arahkan kursor pada layar putih dan klik di tempat saudara ingin variabel laten tersebut ditempatkan. "Jangan panik" saudara dapat merubah posisi variabel laten yang sudah dibuat dengan klik dan drag pada variabel yang saudara inginkan rubah posisinya.

» Klik pada layar kerja

- → Pada latent variable name » isikan nama variabel (max 8 karakter) misalnya "SSuport"
- → Klik indikator (yang bersesuaian dengan variabelnya) pada add indicators » klik add
- → Pada measurement model pilih Reflektif (ingat hal ini sangat penting, pastikan measurement model saudara reflektif atau formatif)

Close Help			
Latent variable name:			
(max 8 characters)	SSuport		
View/remove indicators:		Add indicators:	
SS1 SS2		SCV1 SCV2	
SS3 SS4		SCV3 SCI1	
		SCI2 SCI3	
		BE1 BE2	
		BE3 CI1	
		CI2	
Demon			
Reniove			
medsurement model:			
O Reflective	O Formative		

» Klik Save » Klik Save latent variable settings

WarpPLS 8.0 -	- Create latent variable		-	0	×
Save Close	Help				
Jave Intern	Latent variable name: (max 8 characters)	SSuport			
	View/remove	Add indicators:			
	mulcators.	IN CONCENTRATION OF THE OWNER OF			
	<u>\$\$1</u> \$\$2 \$\$3 \$\$4	SCV1 SCV3 SCV3 SC1 SC12 SC12 SC13 BE1 BE2 BE3 C11 C12 C12 C13			
	Remove	Add			
	Measurement model:				
	Reflective O Format	tve			

» Varibel Latent sudah berhasil di buat (create).

» Lakukan cara yang sama untuk variabel lainnya

WarpPLS 8.0 -	- Create or edit the SEM model		0	
del options	Latent variable options Direct link options Moderating link options Help			
	Choose one of the menu options above to perf (You should start by creating latent variables, using the latent variable menu options. You them.)	orm a task. can then drag and drop them, and create links among		
	Ssuport (R)4i			

» Semua variabel latent sudah berhasil dibuat.

del options	Latent variable options Direct link options	Moderating link options Help		
	(You should start b	Choose one of the mem y creating latent variables, using the latent varia	u options above to perform a task. ble menu options. You can then drag and drop them, and create links among them.)	
	SSuport (R)4i			
	SCValue	BEng	CoCreat	
			16(3)	
	(R)3i			
				- 1

» Membuat direct link options » Direct link option » create direct link

options	Latent variable options	Direct link options Mode	rating link options Help		
		Create direct link Delete direct link Delete all direct links	Choose one of the menu ting latent variables, using the latent variable	options above to perform a task. e menu options. You can then drag and drop them, and create links among them.)	
	(R)4	prt			
	SCValue (R)3i	\supset	BEng (R)3i	CoCreat (R)31	
	(R)3i	>			

» Klik satu kali pada variabel SSuport hingga berubah warna menjadi lebih hitam, kemudian pindahkan kursor dan klik satu kali pada variabel laten BEng. Garis direct link akan otomatis muncul.

» Lakukan hal yang sama sesuai dengan desain penelitian dalam Gambar 1.1

» Varibel latent dengan direct link

» Save model and close

D. MENGANALISIS

» Klik Proceed to step 5

» Perform SEM analysis

» Warppls akan memunculkan nilai path coeficient (koefisien Jalur), P-value (nilai signifikansi) dan nilai R^2

PENGUJIAN VALIDITAS KONSTRUK

a. Loading faktor (Reflektif)

» Klik View » View indicator loadings and cross-loadings » View combine loadings and

cross-loadings

	SSuport	SCValue	SCInt	BEng	CoCreat	Type (as defined)	SE	P value				
551	(0.818)	-0.140	-0.044	0.229	0.007	Reflective	0.047	<0.001				
552	(0.837)	0.302	-0.064	0.011	-0.250	Reflective	0.047	<0.001				
553	(0.834)	-0.128	0.327	-0.097	-0.058	Reflective	0.047	<0.001				
554	(0.036)	-0.039	-0.220	-0.136	0.301	Reflective	0.047	<0.001				
SCVI	-0.078	(0.866)	-0.145	-0.075	0.124	Reflective	0.047	<0.001				
SCV2	0.015	(0.073)	-0.072	-0.027	0.043	Reflective	0.047	<0.001				
CV3	0.005	(0.035)	(0.225	0.106	-0.173	Reflective	0.047	<0.001				
scin	0.255	-0.311	(0.009)	-0.010	-0.104	Reflective	0.047	<0.001				
SCI2	-0.125	0.093	(0.047)	-0.123	0.229	Reflective	0.047	<0.001				
DC13	-0.116	0.202	(0.000)	0.137	-0.053	Reflective	0.047	<0.001				
DEI	-0.171	0.559	-0.020	(0.754)	-0.220	Reflective	0.040	<0.001				
DE2	0.140	0.227	-0.043	(0.072)	0.001	Reflective	0.047	-0.001				
CII	0.145	-0.327	0.072	(0.022)	0.110	Reflective	0.047	-0.001				
CI2	0.060	-0.039	-0.135	0.190	(0.841)	Reflective	0.047	<0.001				
C12	-0.030	0.104	0.110	0.075	(0.041)	Reflective	0.047	-0.001				
CIS	_0.131	0.154	-0.110	-0.075	(0.000)	Reliective	0.047	40.001				

Berdasarkan tabel diatas dapat diketahui bahwa semua indikator yang mengukur masingmasing variabel latennya memiliki loading faktor (didalam kurung) lebih besar dari 0.7. Dengan demikian indikator tersebut dinyatakan valid sebagai pengukur variabel latennya yang bersesuaian.

b. Average Variance Extracted (AVE)

» Klik view » View latent variable coefficients

	SSuport	Scvalue	SCInf	BEng	CoCreat			
R-squared				0.628	0.564			
Adj. R-squared				0.625	0.563			
Composite reliab.	0.900	0.893	0.876	0.858	0.876			
Cronbach's alpha	0.851	0.820	0.787	0.750	0.787			
Avg. var. extrac.	0.691	0.736	0.701	0.668	0.702			
Full collin. VIF	2.487	3.975	3.123	2.898	3.298			
Q-squared				0.629	0.565			
(No. diff. vals.)	57.000	34.000	37.000	38.000	33.000			
(No. diff. vals./N)	0.162	0.097	0.105	0.108	0.094			
Min	-4.819	-2.849	-3.108	-3.169	-3.351			
Max	1.380	1.253	1.730	1.876	1.887			
Median	-0.051	0.025	-0.038	0.303	0.015			
Mode	-0.438	0.031	0.833	0.303	0.015			
Skewness	-1.190	-0.660	-0.712	-0.725	-0.832			
Exc. kurtosis	2.636	-0.023	0.284	0.459	0.713			
Unimodal-RS	Yes	Yes	Yes	Yes	Yes			
Unimodal-KMV	Yes	Yes	Yes	Yes	Yes			
Normal-JB	No	No	No	No	No			
Normal-RJB	No	No	No	No	No			
1 Enderson	View	View	View	View	View			

Berdasarkan tabel diatas semua variabel laten memiliki nilai AVE (Avg.var.extrac) > 0.5. Dengan demikian indikator yang mengukur variabel laten tersebut dapat dinyatakan valid sebagai pengukur variabel laten yang bersesuaian.

c. Discriminant Validity

» Klik View » View indicator loadings and cross-loadings » View combine loadings and cross-loadings

	SSuport	SCValue	SCInf	BEng	CoCreat	Type (as defined)	SE	P value		
SS1	(0.818)	-0.140	-0.044	0.229	0.007	Reflective	0.047	<0.001		
\$\$2	(0.837)	0.302	-0.064	0.011	-0.250	Reflective	0.047	<0.001		
\$\$3	(0.834)	-0.128	0.327	-0.097	-0.058	Reflective	0.047	<0.001		
SS4	(0.836)	-0.039	-0.220	-0.138	0.301	Reflective	0.047	<0.001		
SCV1	-0.078	(0.866)	-0.145	-0.075	0.124	Reflective	0.047	<0.001		
SCV2	0.015	(0.873)	-0.072	-0.027	0.043	Reflective	0.047	<0.001		
SCV3	0.065	(0.835)	0.225	0.106	-0.173	Reflective	0.047	<0.001		
SCI1	0.253	-0.311	(0.809)	-0.016	-0.184	Reflective	0.047	<0.001		
SCI2	-0.125	0.093	(0.847)	-0.123	0.229	Reflective	0.047	<0.001		
SCI3	-0.116	0.202	(0.856)	0.137	-0.053	Reflective	0.047	<0.001		
BE1	-0.171	0.559	-0.028	(0.754)	-0.220	Reflective	0.048	<0.001		
BE2	0.007	-0.175	-0.043	(0.872)	0.081	Reflective	0.047	<0.001		
BE3	0.149	-0.327	0.072	(0.822)	0.116	Reflective	0.047	<0.001		
CI1	-0.065	-0.039	-0.135	0.198	(0.865)	Reflective	0.047	<0.001		
CI2	-0.058	-0.147	0.244	-0.132	(0.841)	Reflective	0.047	<0.001		
CI3	0.131	0.194	-0.110	-0.075	(0.806)	Reflective	0.047	<0.001		

Berdasarkan tabel diatas, loading faktor indikator SS1 hingga SS4 yang mengukur variabel SSuport lebih besar dibandingkan korelasi indikator tersebut dengan variabel yang lain. Dengan demikian keempat indikator yang mengukur variabel SSuport dinyatakan valid untuk mengukur variabel SSuport. Atau dapat juga dilihat dari nilai p value keempat indikator variabel SSuport bernilai <0.001 sehingga semua indikator dinyatakan valid untuk mengukur variabel SSuport. Bagaimana dengan indikator yang lain? Tugas saudara untuk menentukan dengan cara yang sama seperti yang telah dijelaskan diatas.

PENGUJIAN RELIABILITAS KONSTRUK

Composite Reliability dan Cronbach's Alpha

» Klik view » View latent variable coefficients

		SSuport	SCValue	SCInf	BEng	CoCreat				
R-t	squared				0.628	0.564				
Adi, I	R-squared				0.625	0.563				
Comp	osite reliab.	0.900	0.893	0.876	0.858	0.876				
Cronb	ach's alpha	0.851	0.820	0.787	0.750	0.787				
Avg. 1	var. extrac.	0.691	0.736	0.701	0.668	0.702				
Full	collin. VIF	2.487	3.975	3.123	2.898	3.298				
Q-:	squared				0.629	0.565				
(No.	diff. vals.)	57.000	34.000	37.000	38.000	33.000				
(No. d	liff. vals./N)	0.162	0.097	0.105	0.108	0.094				
	Min	-4.819	-2.849	-3.108	-3.169	-3.351				
	Max	1.380	1.253	1.730	1.876	1.887				
N	1edian	-0.051	0.025	-0.038	0.303	0.015				
	Mode	-0.438	0.031	0.833	0.303	0.015				
Sk	ewness	-1.190	-0.660	-0.712	-0.725	-0.832				
Exc	kurtosis	2.636	-0.023	0.284	0.459	0.713				
Unir	modal-RS	Yes	Yes	Yes	Yes	Yes				
Unim	odal-KMV	Yes	Yes	Yes	Yes	Yes				
No	irmal-JB	No	No	No	No	No				
Nor	rmal-RJB	No	No	No	No	No				
His	togram	View	View	View	View	View				

Berdasarkan tabel diatas nilai composite reliability semua variabel laten > 0.70. Dengan demikian indikator yang mengukur variabel tersebut dinyatakan reliabel. Dari tabel diatas kita juga dapat mengetahu nilai cronbach's Alpha dari setiap variabel laten yang > 0.70 sehingga semua indikator yang mengukur variabel laten dinyatakan reliabel.

GOODNESS OF FIT MODEL

» Klik view » View latent variable coefficients

				1				_
	SSuport	SCValue	SCInf	BEng	CoCreat			
R-squared				0.628	0.564			
Adj. K-squared	0.000			0.625	0.563			
Composite reliab.	0.900	0.893	0.876	0.858	0.876			
Cronbach's alpha	0.851	0.820	0.787	0.750	0.787			
Avg. var. extrac.	0.691	0.736	0.701	0.668	0.702			
Full collin. VIF	2.467	3.9/5	3.123	2.898	3.298			
Q-squared	67.000	24.000	27.000	0.629	0.565			
(No. diff. vals.)	57.000	34.000	37.000	38.000	33.000			
(No. diff. vals./N)	0.162	0.097	0.105	0.108	0.094			
Min	-4.819	-2.849	-3.108	-3.169	-3.351			
Max	1.380	1.253	1.730	1.876	1.887			
Median	-0.051	0.025	-0.038	0.303	0.015			
Mode	-0.438	0.031	0.833	0.303	0.015			
Skewness	-1.190	-0.660	-0.712	-0.725	-0.832			
Exc. kurtosis	2.636	-0.023	0.284	0.459	0.713			
Unimodal-RS	Yes	Yes	res	Yes	Yes			
Unimodal-KMV	Yes	Yes	Yes	Yes	res			
Normal-JB	NO	NO	NO	NO	NO			
Normal-RJB	Manu	No	No	NO	No			
The second se	1 3 4 1 4 5 5 5 6	VIEW	V PP VV	VIPN	VPW			

Goodness of fit model dalam analisis PLS SEM dilakukan dengan menggunakan R Square R² dan Q square Q². Berdasarkan tabel diatas, nilai R² variabel Brand Engagement sebesar 0.628 sedangkan nilai R² variabel Co Creation Intention sebesar 0.564. Hal ini menunjukan bahwa keragaman variabel brand Engagement mampu dijelaskan oleh variabel social support, social commerce information sharing dan social commerce value sebesar 62.8% sedangkan sisanya sebesar 37.2% merupakan kontribusi variabel lain yang tidak dibahas dalam penelitian tersebut. Berikutnya, nilai R² sebesar 0.564 menunjukan keragaman variabel Co Creation Intention mampu dijelaskan oleh variabel lain yang tidak dibahas dalam penelitian tersebut. Berikutnya, nilai R² sebesar 0.564 menunjukan keragaman variabel Co Creation Intention mampu dijelaskan oleh variabel Brand Engagement sebesar 56.4% sedangkan sisanya sebesar 43.6% merupakan kontribusi variabel lain yang tidak dibahas dalam penelitian tersebut.

Nilai Q² variabel Brand Engagement sebesar 0.629 hal ini menunjukan bahwa variabel social support, social commerce information sharing dan social commerce value memiliki kekuatan prediksi yang kuat terhadap brand engagement. Demikian pula nilai Q2 variable Co Creation Intention sebesar 0.565 menunjukan bahwa variabel Brand Engagement memiliki kekuatan prediksi yang kuat terhadap Co Creation Intention. *Goodness of fit model* selain dapat dilihat melalui R-*square* dan Q-*square* juga dapat dilihat melalui model fit and quality indices.

» View » General result

Berdasarkan output model fit and quality indices diatas semua ukuran goodness of fit terpenuhi.

PENGUJIAN HIPOTESIS LANGSUNG

Pengujian hipotesis digunakan untuk mengetahui ada tidaknya pengaruh variabel eksogen terhadap variabel endogen. Kriteria pengujian apabila p value < level of significance (alpha) maka dinyatakan ada pengaruh signifikan variabel eksogen terhadap variabel endogen.

» View » View path coefficients and P values

<0.00

Pengaruh Social Support terhadap brand engagement menghasilkan *p value* sebesar <0.001 Hasil pengujian tersebut menunjukkan p *value* < *level of significance* (*Alpha* (α=5%)). Hal ini menunjukkan terdapat pengaruh signifikan social support terhadap brand engagement. Koefisien jalur pengaruh social support terhadap brand sebesar 0,208 menunjukkan social support berpengaruh positif terhadap brand engagement. Hal ini berarti semakin tinggi social support maka dapat meningkatkan *brand engagement*.

- Berdasarkan tabel diatas kita dapat melihat bahwa nilai pengaruh social commerce value dan social commerce information sharing terhadap Brand Engagement juga memiliki nilai p value <0.001, artinya variabel social commerce value dan social commerce information sharing memiliki pengaruh yang signifikan terhadap Brand engagement p value (0.001) < level of significance (Alpha (α=5%)). Koefisien jalur pengaruh social commerce value dan social commerce information sharing terhadap Brand Engagement berturut-turut 0.418 dan 0.237 yang artinya kedua variabel ini juga memiliki pengaruh yang positif terhadap Brand Engagement.</p>
- Pengaruh brand engagement terhadap Co Creation Intention menghasilkan *p* value sebesar <0.001. Hasil pengujian tersebut menunjukkan p value < level of significance (Alpha (α=5%)). Hal ini menunjukkan bahwa terdapat pengaruh signifikan brand engagement terhadap Co Creation Intention. Koefisien jalur pengaruh brand engagement terhadap Co Creation Intention sebesar 0,751 menunjukkan brand engagement berpengaruh positif terhadap Co Creation Intention. Hal ini berarti semakin tinggi brand engagement maka cenderung dapat meningkatkan Co Creation Intention.</p>

Pengujian hipotesis juga dapat dilakukan dengan membandingkan nilai t hitung dengan t tabel » Klik explore » explore T ratios and confidence interval

1	Evalues statistical news and minimum cample size sequirements				
Welcome to V	Explore Statistical power and minimum sample size requirements	nd			
Java.	Explore conditional probabilistic queries		Proceed to Step 1	Proceed to Step 4	
This software	Explore full latent growth	ising			
various compo	Explore multi-grown analyses	least			
Step 1: Open	Explore many group unaryses		Proceed to Step 2	Proceed to Step 5	
Step 2: Read	Explore measurement invariance				
Step 3: Pre-p	Explore analytic composites and instrumental variables				
Step 5: Perfo	Explore Categorical-Indiment-Categorical Conversion		Proceed to Step 3	View/save analysis results	
Press a "Proc	Explore Dijkstra's consistent PCS outputs	1905			
are grayed out;					
			(Biggort)		
Status of SEM an	alysis steps (* = completed):	_	Tapper International		
Status of SEM an	alysis steps (* = completed): 	_	Happer Inge Page Page Page Page Page Page Page Pa	#17. (17.m)	
Status of SEM an "Step 1: Open/cre Project file: Lath Rath: D Whodu w	alysis steps (* = completed): vate project file an1		(15000) (1500) ((0.53) Cocraet (0.53) (1)(3)	
Status of SEM an "Step 1: Open/cre Project file: Latih Path: D'Modul "Step 2: Read ray	alysis steps (* = completed); rate project file an1 arppis\ vata		150pm 1000	(P. 41) (P. 41) (P. 41) (P. 41) (P. 41) (P. 41) (P. 41) (P. 41) (P. 41)	
Status of SEM an *Step 1. Open/or Project file: Latih Path: D.Woodu *Step 2: Read ra Raw data file: La	alysis steps (* = completed): 		(Happert (PL) (PL) (PL) (PL) (PL) (PL) (PL) (PL)	(P-31) (P-31) (R-2.5)	
Status of SEM an "Step 1. Open/or Project file: Latih Path: D'Modul w "Step 2. Read ray Raw data file: La Path: D'Modul w "Step 3. Pre-proc	alysis steps (* = completed): 		11 Support 194 194 195 195 195 195 195 195 195 195		
Status of SEM an *Step 1: Open/crr Project file: Latih Path: D'Modul w *Step 2: Read ra: Raw data file: La Path: D'Modul w *Step 3: Pre-pro- *Step 4: Define va	alysis steps (* = completed): vate project file an1 arppls\ v data bihan 1xlsx arppls\ ess data hablesdinks in SEM model		Hapert (B) (C) (C) (C) (C) (C) (C) (C) (C	(P-51) (P-51) (P-51) (P-55) (P-55)	
Status of SEM an "Step 1: Openicre Project file: Lath Path: D'Modul "Step 2: Read ras Raw data file: La Path: D'Modul w "Step 3: Pre-proc "Step 4: Define va "Step 5: Perform/	alysis steps (* = completed); ste project file an1 arppis) v data than 1 stax arppis) stata arppis) stata arpoles arbitedinins in SEM model wew SEM analysis/results		Happert PLA (P.N) (P	(20.2) (P-31) (R/20 K ² 455	
Status of SEM an *Step 1: Open/ore Project file: Lath Path: D'Modul w *Step 2: Read ra: Raw data file: La Path: D'Modul w *Step 3: Pre-proc *Step 4: Define v *Step 5: Perform/	alysis steps (* = completed): 		11 Support 194 (1) (1) (1) (1) (1) (1) (1) (1)		

Save Close Help										
Confidence level used (ran	ige: 0.5 to 0.99)									
0.950										
Notes: leave cell empty for a confidence interval, gene	default value; in a test erally the hypothesis is	with a T ratio, supported if z	generally the ero is not in t	hypothesis is he interval.	supported if T ratio >	critical T ratio; one-	tailed tests are used f	or directional hypoth	eses; in a test with	
			1			1	1			

Critical T ratios										
For one tailed tests: 1 545										
For one-tailed tests: 1.045.										
For two-tailed tests. 1.960.										

T ratios for path coefficients										

	SSuport	SCValue	SCInf	BEng	CoCreat					
SSuport										
SCValue										
SCInf										
BEng	4.031	8.325	4.609							
CoCreat				15.710						

Confidence intervals for path coefficients										
	SSuport			SCValue		SCInf		BEng		Co
SSuport										
SCValue										
SCInf										
BEng	0.107	0.310		0.319	0.516	0.136	0.338			
1817										

Perhatikan bahwa warppls menyediakan nilai t hitung secara otomatis untuk one- tails sebesar 1.645 dan two tail sebesar 1.960. Penggunaan keduanya tergantung kepada rumusan hipotesis yang dibuat peneliti terkait apakah hipotesis yang diajukan sudah menunjukan arah. Dalam buku ini di asumsikan hipotesis tidak menggunakan arah sehingga menggunakan uji t dua ujung atau two tailed.

Berdasarkan nilai t hitung dalam tabel diatas (T ratios for path coefficients) nilai pengaruh Social Support terhadap brand engagement sebesar 4.031 > 1.960 sehingga dapat disimpulkan bahwa Social Support berpengaruh signifikan terhadap brand engagement. Bagaimana dengan nilai t hitung lainnya? Bagaimana kesimpulan dari nilai t hitung diatas, tentu anda dapat dengan mudah menjawabnya dengan tuntunan diatas bukan?

PENGUJIAN MODEL MEDIASI DALAM SEM PLS

Seringkali penelitian dalam ilmu sosial memasukan variabel pemediasi sebagai perluasan model hubungsn sebab-akibat dalam model PLS SEM yang umumnya berupa konstruk/variabel laten eksogen berpengaruh secara langsung terhadap konstruk/variabel laten endogen.

Rule of thumb. Baron dan Kenny (1986)

- Jika pengaruh langsung X → Z (P3) signifikan dan pengaruh tidak langsung X → Y→Z (P1xP2) signifikan, maka efek mediasi adalah parsial (partial mediation).
- Jika pengaruh langsung X → Z (P3) signifikan dan pengaruh tidak langsung X → Y→Z (P1xP2) tidak signifikan, maka tidak ada efek mediasi (no mediation).
- Jika pengaruh langsung X → Z (P3) tidak signifikan dan pengaruh tidak langsung X → Y → Z
 (P1xP2) signifikan, maka dikatakan efek mediasi penuh (full mediation).

Latihan Pengujian Model Mediasi dalam WarpPLS dengan menggunakan design penelitian seperti pada Gambar 1.1

» Klik proceed to step 1

Explore Help			
Welcome to WarpPLS 8.0, a software developed by Ned Kock using MATLAB, C++ and Java. This software will help you conduct a structural equation modeling (SEM) analysis using various composite-based and factor-based methods, including the "warped" partial least sources (OIS structure).	Proceed to Step 1 Proceed to Step 4		
audunes (rc.s) mientoic, mie ananysis win De Control Leit in forgin die fonoming steps. Step 1: Open or create a project file to save yoor work. Step 2: Read the raw data used in the SEM analysis. Step 4: Define the variables and links in the SEM model. Step 5: Define the SEM analysis and view the results.	Proceed op 2 Proceed to Step 5 Proceed to Step 3 View/save analysis result		
Press a "Proceed to Step" button when you are ready to continue. (Unavailable steps are grayed out; they will be made available as you progress through the steps.) For more help, click on the "Help" menu option at the top of this window.			
Status of SEM analysis steps (* = completed):			
-Step 1: Open/create project file Project file: Not selected Path: Not selected	No model defined yet		
-Step 2: Read raw data Raw data file: Not selected Path: Not selected			

» Klik create project file

» Simpan file project dengan ekstensi (.prj) dan berikan nama Latihan mediasi

Welcome tr	NarpPLS 8.0 -	Step 1: Open or create a project file to save your w	ork			- 0	×
This softwa	Enter the nan	me of a file to save your work.		×			
squares (PL	Save in:	Modul warppis	+ 🗈 💣 🗊 -				
Step 2: Re Step 3: Pre Step 4: Pre Step 5: Pe Press a "Pr are grayed o For more he	Quick access Desktop Libraries This PC	Name ^	Date modified 8/7/2022 1:17 AM	Type Warp	Open project file Create project file Go back		ĥ
Status of SEI *Step 1: Ope Project file: L Path: D:Moc -Step 2: Rea Raw data file	Network	File name: Latinan Medias Save as type: (".prj)	✓ Sar	ve cel			
Path: Not se -Step 3: Pre- -Step 4: Defit -Step 5: Perft							

» Proceed to step 2

» Klik Read from file

» Buku ini menampilkan data yang berasal dari exel (.xls). Jika file data anda dalam format exel, pastikan files of type berisikan "All Files" agar file format exel saudara dapat terbaca. Secara default warppls akan membaca file notepad (.txt)

	/ data file		×		
Look in:	Modul warppls	+ 🗈 💣 📰 •			
4	Name	Date modified	Туре		
Chief access	Latihan 1	8/6/2022 9:57 PM	Micre		
ACICK OCCESS	output hasil latihan1	8/7/2022 1:16 AM	Text [
	Project latihan 1	8/7/2022 1:17 AM	Warp	Read from file	
Desktop					
Libraries				Read from clipboard	
This PC				Go back	
9					
Network					
	File name: Latihan 1	• 0	Ipen		
	Fles of type:	- G	ancel		

» Klik ok

is α,υ − step ε, neau une raw uaria useu in une scini analysis			
You are now in Step 2: Read the raw data used in the SEM analysis. Raw data can be read from a file or from the clipboard. If the source of the labels is a file, its type can be any of the following: .xts or xlsx: An Excel file. .txt: A tab-delimited, or comma-delimited text file.	Read from file		
		-3	×
As soon as the file import wizard close	es, a table will show the imported data.		
ir mere are senous prociems with the data (e.g., tack of Press Ok ti	column headings), correct the source file and try again. o continue.		
innere are senous problems with the data (eg., tack of Press Okt	column headings), correct the source file and try again. o continue.		
innere are senous problems with the data (eg., tak of Press Okti	column headings), correct the source file and try again. o continue.		
in mere are senous problems with the data (eg., tak of Press Okt	column headings), correct the source file and try again.		

» Klik next

You are now in Step 2: Re	ad the raw data used	in the SEI	A analysis.									
Raw data can be read fro	m a file or from the cli	pboard.										
If the source of the labels .xls or xlsx: An Excel file .txt: A tab-delimited, or c	i is a file, its type can b t. comma-delimited text f	e any of t file.	he following	:						Re	ead from file	
For Excel workbooks wir either the first in the work	Import Wizard								- 1	- ×	om clipboard	
the first row, and the valu	Workshoets	arppis\Lat	inan Lxisx								-	
rows.	worksneets	data	textdata co	olheaders	1 22					1		
Press the "Read from fil	O Sheet1		1	2	3		4	5	6	1	o back	
you are ready to read the	Sheet2 (Blank)	2	6		5	4	6	4		5 1		
Press the "Go back" but	Sheet3 (Blank)	3	6	-	5	6	6	5		5		
ror more neip, click on t	Chaetd (Plank)	4	6		6	5	7	7		7		
	Sheet4 (blank)	5	7		5	5	6	6	S S	4		
		6	6		6	5	6	5	1	6		
		7	7		6	5	7	7		6		
		8	7		7	6	6	6		7		
		9	6	_	6	6	7	2		4		
		11	6		5	5	6	6		5		
		12	7		6	5	6	3		5		
		13	5		5	7	6	5		6		
		14	3		4	5	5	4		5		
		15	5		5	6	6	6		5		
		16			6	5	5	4		6		
	Help			< Back	Next >	Finist		enerate MA	TLAB code	Cancel		

» Klik finish

A Import 1	Wizard												-	0	×
Select vari	ables to import u	sing checkl	boxes												
O Create	variables matchin	ng preview.													
⊖ Create	vectors from eac	h column u	using column nan	nes.											
O Create	vectors from eac	h row using	g row names.												
Variables in	D:\Modul warpp	pls\Latihan	1.xlsx, Worksheet	: Sheet1											
Import	Name 🛎	Size	Bytes	Class		No	variable selected	for preview.							
0	Colhead	1x16 352x16 1x16	1068 45056 1068	cell double cell											
Help									< Back	Next >	Finish	Generat	te MATLAB cod	e Ci	ancel

» Klik ok

» Klik yes

Does t	he data look	correct?					1	fes			No				
	SS1	\$\$2	\$\$3	SS4	SCV1	SCV2	SCV3	SCI1	SCI2	SCI3	BE1	BE2	BE3	CI1	CI
1	5.000	5.000	4.000	6.000	4.000	4.000	5.000	2	6.000	5.000	3.000	6.000	6.000	6.000	6.000
2	6.000	6.000	5.000	6.000	5.000	5.000	5.000	00	5.000	6.000	4.000	6.000	5.000	5.000	6.000
3	6.000	5.000	6.000	6.000	5.000	5.000	5.000	00	6.000	6.000	5.000	6.000	5.000	6.000	5.000
4	6.000	6.000	5.000	7.000	7.000	7.000	6.000	00	5.000	4.000	4.000	5.000	4.000	5.000	6.000
5	7.000	5.000	5.000	6.000	6.000	4.000	5.000	6.000	7.000	6.000	5.000	6.000	6.000	5.000	7.000
6	6.000	6.000	5.000	6.000	5.000	6.000	5.000	6.000	6.000	6.000	4.000	5.000	6.000	5.000	6.000
7	7.000	6.000	5.000	7.000	7.000	6.000	7.000	6.000	7.000	7.000	5.000	7.000	6.000	7.000	6.000
8	7.000	7.000	6.000	6.000	6.000	7.000	6.000	7.000	7.000	6.000	5.000	6.000	6.000	5.000	7.000
9	7.000	6.000	7.000	7.000	5.000	6.000	6.000	7.000	7.000	6.000	4.000	5.000	5.000	6.000	7.000
10	6.000	6.000	6.000	7.000	5.000	4.000	4.000	4.000	5.000	5.000	4.000	4.000	5.000	4.000	5.000
11	6.000	5.000	5.000	6.000	6.000	5.000	6.000	6.000	6.000	7.000	5.000	6.000	5.000	5.000	6.000
12	7.000	6.000	5.000	6.000	3.000	5.000	6.000	6.000	6.000	5.000	5.000	6.000	6.000	4.000	6.000
13	5.000	5.000	7.000	6.000	5.000	6.000	5.000	6.000	7.000	7.000	5.000	6.000	5.000	4.000	6.000
14	3.000	4.000	5.000	5.000	4.000	5.000	5.000	5.000	6.000	5.000	4.000	5.000	4.000	4.000	5.000
15	5.000	5.000	6.000	6.000	6.000	5.000	6.000	6.000	7.000	7.000	6.000	7.000	6.000	6.000	7.000
16	7.000	6.000	5.000	5.000	4.000	6.000	5.000	6.000	7.000	6.000	5.000	6.000	6.000	6.000	7.000
17	6.000	6.000	5.000	5.000	6.000	5.000	5.000	6.000	5.000	6.000	5.000	6.000	6.000	6.000	7.000
18	5.000	5.000	6.000	6.000	5.000	6.000	5.000	6.000	6.000	6.000	4.000	6.000	5.000	5.000	5.000
19	5.000	6.000	5.000	5.000	4.000	5.000	4.000	4.000	5.000	4.000	3.000	5.000	4.000	4.000	5.000
20	7.000	6.000	6.000	5.000	6.000	5.000	5.000	5.000	4.000	5.000	5.000	5.000	4.000	5.000	6.000
21	7.000	6.000	5.000	7.000	7.000	5.000	4.000	4.000	6.000	4.000	4.000	6.000	5.000	7.000	6.000
22	5.000	6.000	6.000	7.000	5.000	5.000	5.000	6.000	5.000	5.000	4.000	5.000	4.000	5.000	6.000

» Proceed to step 3

» Klik Pre-process data

WarpPLS 8.0 - Step 3: Pre-process the data for the SEM analysis		1.7	0	×
Help				
You are now in Step 3: Pre-process the data for the SEM analysis. When you press the "Pre-process data" button, the raw data file will be checked for a few problems (a, missing values) and corrected automatically. After the checks are performed, and the necessary corrections are made, the data will be standardized. You will be able to see the standardized data in table format, and will be asked to accept it. Once this step is completed, you will be able to save the pre-processed data file as a ".txt", lab-definited file, through a menu option in the main software window. (You will be able to save both the standardized and unstandardized window. (You will be able to save both the standardized and unstandardized window. The save content them, in case you need them.). Press the "Pre-process data" button when you are ready to pre-process the data for the SEM madysis. Press the "Go back" button to go back to the main window. For more help, click on the "Help" menu option at the top of this window.	Pre-process data Go back			

» Klik ok

S 8.0 - Pre-processing the data		-	đ
Data pre-processing completed; press "Ok" button to close window.	Ok		
Pre-processing data results:			
Checking for and correcting missing values (Missing data imputation algorithm used: Arithmetic Mean Imputation) No missing values found. Checking for and correcting zero variance problems No columns with zero variance found. Checking for and correcting identical column names No identical column names found.			
Checking for rank problems No rank problems found. Standardizing data All columns (indicators) standardized.			

» Klik ok

4		 0	×
Ok			
	This table shows the pre-processed data, which is standardized. Standardized data are obtained by subtracting each column by its mean and dividing into the column's standard deviation. Typically standardized data range from -4 to 4, and missing values in the raw data are shown as zeros. Press Ok to continue.		

» Klik yes

Does t	he data look	correct?							Vee				No		
									Tes				NO		
	SS1	SS2	SS3	SS4	SCV1	SCV2	SCV3	SCI1	SC	SCI3	BE1	BE2	BE3	CI1	C
1	-1.710	-0.597	-1.409	-0.142	-1.856	-1.619	-0.684	-0.758	0.28	2,694	-2.353	0.093	0.985	1.084	0.180
2	-0.375	0.583	-0.342	-0.142	-0.764	-0.607	-0.684	-0.758	-0.843	0.350	-1.231	0.093	-0.290	0.021	0.180
3	-0.375	-0.597	0.724	-0.142	-0.764	-0.607	-0.684	-0.758	0.268	0.350	-0.108	0.093	-0.290	1.084	-1.062
4	-0.375	0.583	-0.342	1.137	1.421	1.418	0.358	-0.758	-0.843	-1.737	-1.231	-1.119	-1.565	0.021	0.180
5	0.959	-0.597	-0.342	-0.142	0.329	-1.619	-0.684	0.412	1.379	0.350	-0.108	0.093	0.985	0.021	1.422
6	-0.375	0.583	-0.342	-0.142	-0.764	0.405	-0.684	0.412	0.268	0.350	-1.231	-1.119	0.985	0.021	0.180
7	0.959	0.583	-0.342	1.137	1.421	0.405	1.400	0.412	1.379	1.393	-0.108	1.305	0.985	2.146	0.180
8	0.959	1.764	0.724	-0.142	0.329	1.418	0.358	1.582	1.379	0.350	-0.108	0.093	0.985	0.021	1.422
9	0.959	0.583	1.790	1.137	-0.764	0.405	0.358	1.582	1.379	0.350	-1.231	-1.119	-0.290	1.084	1.422
10	-0.375	0.583	0.724	1.137	-0.764	-1.619	-1.725	-1.928	-0.843	-0.694	-1.231	-2.331	-0.290	-1.041	-1.062
11	-0.375	-0.597	-0.342	-0.142	0.329	-0.607	0.358	0.412	0.268	1.393	-0.108	0.093	-0.290	0.021	0.180
12	0.959	0.583	-0.342	-0.142	-2.949	-0.607	0.358	0.412	0.268	-0.694	-0.108	0.093	0.985	-1.041	0.180
13	-1.710	-0.597	1.790	-0.142	-0.764	0.405	-0.684	0.412	1.379	1.393	-0.108	0.093	-0.290	-1.041	0.180
14	-4.378	-1.777	-0.342	-1.420	-1.856	-0.607	-0.684	-0.758	0.268	-0.694	-1.231	-1.119	-1.565	-1.041	-1.062
15	-1.710	-0.597	0.724	-0.142	0.329	-0.607	0.358	0.412	1.379	1.393	1.014	1.305	0.985	1.084	1.422
16	0.959	0.583	-0.342	-1.420	-1.856	0.405	-0.684	0.412	1.379	0.350	-0.108	0.093	0.985	1.084	1.422
17	-0.375	0.583	-0.342	-1.420	0.329	-0.607	-0.684	0.412	-0.843	0.350	-0.108	0.093	0.985	1.084	1.422
18	-1.710	-0.597	0.724	-0.142	-0.764	0.405	-0.684	0.412	0.268	0.350	-1.231	0.093	-0.290	0.021	-1.062
19	-1.710	0.583	-0.342	-1.420	-1.856	-0.607	-1.725	-1.928	-0.843	-1.737	-2.353	-1.119	-1.565	-1.041	-1.062
20	0.959	0.583	0.724	-1.420	0.329	-0.607	-0.684	-0.758	-1.953	-0.694	-0.108	-1.119	-1.565	0.021	0.180
21	0.959	0.583	-0.342	1.137	1.421	-0.607	-1.725	-1.928	0.268	-1.737	-1.231	0.093	-0.290	2.146	0.180
22	-1.710	0.583	0.724	1.137	-0.764	-0.607	-0.684	0.412	-0.843	-0.694	-1.231	-1.119	-1.565	0.021	0.180
23	-0.375	-0.597	-0.342	1.137	1.421	1.418	-1.725	-0.758	-0.843	-1.737	-0.108	1.305	0.985	1.084	1.422
24	-0.375	0.583	1.790	-0.142	0.329	0.405	-0.684	0.412	1.379	0.350	-1.231	0.093	0.985	1.084	1.422
25	0.959	0.583	0.724	1.137	1.421	0.405	1.400	1.582	0.268	1.393	-0.108	0.093	0.985	0.021	0.180
26	-1.710	-1.777	-1.409	-1.420	-1.856	-1.619	-0.684	0.412	1.379	0.350	-1.231	0.093	-0.290	1.084	0.180
27	0.959	0.583	-0.342	1.137	1.421	0.405	1.400	0.412	1.379	1.393	-0.108	1.305	0.985	2.146	0.180
28	0.959	0.583	1.790	-0.142	0.329	0.405	1.400	1.582	0.268	0.350	1.014	1.305	0.985	1.084	1.422

162

» Klik Proceed to step 4

Welcome to WarpPL S 8.0, a software developed by Ned Kock using MATLAB, C++ and Java. Proceed to Step 1 Proceed to Step 1 In is software will help you conduct a structural equation modeling (SEM) analysis using structures (PL S) method. The analysis will be conducted through the following steps: Proceed to Step 1 Proceed to Step 1 Step 2: Read the raw data used in the SEM analysis. Step 2: Propercoses the data for the SEM analysis. Proceed to Step 2 Proceed to Step 2 Step 3: Pofrom the variables and links in the SEM model. Step 5: Pofrom the SEM analysis. Proceed to Step 3 View/save analysis results Proceed to Step	
And. This software will help you conduct a structural equation modeling (SEM) analysis using various composite-based and factor-based methods, including the "warped" partial least squares (PLS) method. The analysis will be conducted through the following steps: Step 1: Define the variables and links in the SEM manalysis. Step 2: Define the variables and links in the SEM manalysis. Step 4: Define the variables and links in the SEM manalysis. Step 5: Define the variables and when you are ready to continue. (Unavailable steps are grayed out; they will be made available as you progress through the steps.) For more help, click on the "Help" menu option at the top of this window. Stabus of SEM analysis steps (" = completed):	1
various composite-based and factor-based methods, including the "iwarpid" partial least squares (PL) smethod. The analysis will be conducted through the following steps: Step 1: Open or create a project file to save your work. Step 2: Pre-process the data for the SEM analysis. Step 4: Define the variables and links in the SEM model. Step 2: Pre-process the data for the SEM analysis. Step 4: Define the variables and links in the SEM model. Step 5: Pre-proceed to Step "button when you are ready to continue. (Unavailable steps are grayed out; they will be made available as you progress through the steps.) For more help, click on the "Help" menu option at the top of this window.	
Step 1: Open or create a project file to save your work. Proceed the raw data used in the SEM analysis. Step 2: Pre-process the data for the SEM analysis. Proceed to Step 2 Step 2: Step 5: Perform the SEM analysis and view the results. Proceed to Step 3 Press a "Proceed to Step" button when you are ready to continue. (Unavailable steps are grayed out; they will be made available as you progress through the steps.) Proceed to Step 3 For more help, click on the "Help" menu option at the top of this window. Stabus of SEM analysis steps (* = completed):	1
Step 3: Pre-process the data for the SEM analysis. Step 4: Define the variables and links in the SEM model. Step 5: Perform the SEM analysis and view the results. Press a "Proceed to Step" button when you are ready to continue. (Unavailable steps) are grayed out; they will be made available as you progress through the steps.) For more help, click on the "Help" menu option at the top of this window. Status of SEM analysis steps (* = completed):	
Step 3: Periodin use scal analysis and view use results. Proceed to Step* Proceed to Step 3 View/save analysis results Press a "Proceed to Step* button when you are ready to continue. (Unavailable steps are grayed out, they will be made available as you progress through the steps.) Proceed to Step 3 View/save analysis results For more help, click on the "Help" menu option at the top of this window. Status of SEM analysis steps (" = completed). Status of SEM analysis steps (" = completed).	
Press a "Proceed to Step" button when you are ready to continue. (Unavailable steps are grayed out, they will be made available as you progress through the steps.) For more help, click on the "Help" menu option at the top of this window.	
Status of SEM analysis steps (* = completed).	
Status of SEM analysis steps (* = completed):	
Status of SEM analysis steps (* = completed):	
Status of SEM analysis steps (* = completed):	
Status of SEM analysis steps (* = completed):	
*Step 1: Open/create project file	
Project me: Launan webasis(p) No model defined yet	
*Step 2: Read raw data	
Path: Cold warphs	
"Step 3: Pre-process data line to SFU model	
-Step 5. Perine variablesamins in Sear moder	

» Klik Define SEM Model

» Klik latent variable option » klik create latent variable

WarpPLS 8.0	Create or edit the SEM model	-	Ø	×
Model options	Latent variable options Direct link options Moderati	ting link options Help		
	Create latent variable Edit latent variable Delete latent variable Move latent variable	Choose one of the menu options above to perform a task. ng latent variables, using the latent variable menu options. You can then drag and drop them, and create links among them.)		
	Move latent variable			

» Letakkan kursor pada bidang untuk menggambar, lalu klik

WarpPLS 8.0	- Create or edit the SEM m	iodel			0.000	0	×
lodel options	Latent variable options	Direct link options	Moderating link options	Help			
				Select location and click on it to create latent variable.			
						_	
						_	

» Berikan nama latent variabel dan add indicators. Jangan lupa pastikan pengukuran indikator reflektif atau formatif. Dalam contoh ini reflektif. Kemudian klik Save » Save latent variable setting. Kemudian lakukan create latent variabel yang lainnya seperti latihan sebelumnya dengan cara yang sama.

🧈 WarpPLS 8.0	- Create latent variable				Ø	\times
Save Close	Help					
	Latent variable name: (max 8 characters)	SSuport				
	View/remove indicators:		Add indicators:			
	<mark>891</mark> 892 833 834		SCV1 SCV2 SCV3 SCI1 SCI2 SCI3 BE1 BE2 BE3 C11 C12 C13			
	Remove		Add			
	Measurement model:					
	O Reflective	O Formative				

» Setelah semua latent variabel berhasil kita buat, langkah selanjutnya adalah menarik garis direct link yang menghubungkan setiap variabel laten.

PERHATIKAN

Kita akan melakukan uji efek mediasi, oleh karena itu kita perlu mengetahui signifikansi pengaruh langsung (direct efect) dan pengaruh tidak langsung (indirect effect). Sebagai contoh, untuk mengetahui efek mediasi variabel Brand Engagement terhadap pengaruh variabel Social support terhadap variabel Co-creation, maka kita harus menarik direct link dari variabel Social support ke variabel Co Creation agar kita memiliki nilai signifikansi pengaruh langsung variabel Social support terhadap variabel Co Creation. Hasil signifikansi pengaruh langsung (direct effect) ini nantinya akan dibandingkan dengan pengaruh tidak langsung (indirect effect) pengaruh variabel Social support terhadap variabel Co Creation Brand engagement sebagai variabel mediasi.

el options	Latent variable options	Direct link options Moderating link options Help	
		Create direct link Delete direct link Delete direct links Delete all direct links	
		SSuport (R)41	
		BEng (R)3i CoCreat (R)3i	
		SCValue (R)3i	
		SCint (R)31	

» Create direct link hingga mendapatkan gambar seperti dibawah ini.

» Model option » save model and close

» Proceed to step 5

» Perform SEM Analysis

» Hasil analisis SEM nampak

Lakukan pengujian validitas konstruk (convergent Validity dan Discriminant validity)

» View » View indicator loading and cross-loadings » view combine loadings and cross-loadings.

Lakukan pengujian nilai AVE

» View » View latent variable coefficients.

Lakukan Uji reliabilitas konstruk (composite reliability dan Cronbach's Alpha) » View » View latent variable coefficients

Lakukan analisa model fit and quality indices

» View » View General Result

Melihat Signifikansi Direct Effect (Melihat nilai pengaruh langsung)

Sebenarnya melalui gambar analisis SEM kita dapat melihat nilai signifikansi direct effect, namun demikian kita juga dapat melihat dalam model tabel seperti dibawah ini.

» Nilai Signifikansi (P value) direct effect.

lp						
Path coeffic	ients					
	Suport	SCValue	SCInf	REng	CoCreat	_
Suport						
SCValue						
SCInf						
BEng	0.208	0.418	0.237			
CoCreat	0.228	0.263	0.176	0.267		
^p values						_
^p values	SSuport	SCValue	SCInf	BEng	CoCreat	
P values SSuport	SSuport	SCValue	SCInf	BEng	CoCreat	
P values SSuport SCValue	SSuport	SCValue	ŞCinf	BEng	CoCreat	
P values SSuport SCValue SCInf	SSuport	SCValue	SCInf	BEng	CoCreat	
P values SSuport SCValue SCInf BEng	SSuport	SCValue	SCInf <0.001	BEng	CoCreat	
P values SSuport SCValue SCInf BEng CoCreat	SSuport <0.001 <0.001	SCValue <0.001 <0.001	<0.001 <0.001	8Eng	CoCreat	
P values SSuport SCValue SCInf BEng CoCreat	SSuport <0.001 <0.001	<0.001 <0.001	SCInf <0.001 <0.001	8Eng	CoCreat	
SSuport SCValue SCInf BEng CoCreat	SSuport <0.001 <0.001	<0.001 <0.001	<0.001 <0.001	8Eng <0.001	CoCreat	
P values SSuport SCValue SCInf BEng CoCreat	SSuport <0.001 <0.001	<0.001 <0.001	SCInf <0.001 <0.001	8Eng	CoCreat	
P values SSuport SCValue SCInf BEng CoCreat	<pre>SSuport <</pre>	<0.001 <0.001	<0.001 <0.001	8Eng	CoCreat	
P values SSuport SCValue SCInf BEng CoCreat	SSuport <0.001 <0.001	SCValue <0.001 <0.001	<0.001	8Eng	CoCreat	
P values SSuport SCValue SCInf BEng CoCreat	SSuport <0.001 <0.001	<0.001 <0.001	<0.001 <0.001	8Eng <0.001	CoCreat	

Direct Effect	P value	Ket
Ssupport> CoCreat	< 0.001	Signifikan
SCValue> CoCreat	< 0.001	Signifikan
SCInf> CoCreat	< 0.001	Signifikan

Berdasarkan hasil warppls diatas, kita dapat melakukan summary direct effect untuk melakukan analisis mediasi sbb.

» Nilai Signifikansi (P value) indirect effect.

Warppls menyediakan nilai signifikansi indirect effect tanpa harus melakukan perhitungan manual.

» View » View indirect and total effect » View indirect and total effect (Table view)

» Hasil Pengaruh indirect effect dapat kita lihat dalam gambar dibawah ini, sehingga kita mendapatkan kesimpulan seperti dibawah ini

P value	Ket
0.068	Tidak Signifikan
< 0.001	Signifikan
0.045	Signifikan
	P value 0.068 < 0.001 0.045

lose Help						
Indirect and total effects (table view)						
	SSuport	SCValue	SCInf	BEng	CoCreat	
SSuport						
SCValue						
SCInf						
BEng						
CoCreat	0.056	0.112	0.063			
lumber of paths with 2 segments						
-						
	SSuport	SCValue	SCInf	BEng	CoCreat	
SSuport						
SCValue						
SCInf						
BEng						
CoCreat	1	1	1			
D values of indirect effects for name with 2 segments						
r values of indirect effects for pauls with 2 segments						
	EFunant	CC1/abia	SCief	REad	CoCreat	
SEurart	asuport	Scvalue	Scin	beilg	Cocreat	
SCValue .						
20 value						
DEas						
Octop Colored	0.000	0.004	0.045			
cocreat	0.068	0.001	0.045			
Standard errors of indirect effects for paths with 2 segments						
	SSuport	SCValue	SCInf	BEng	CoCreat	
SSuport						

Kesimpulan dari Pengujian Model Mediasi dama PLS SEM adalah sbb:

Direct Effect	P value	Ket	Indirect Effect	P value	Ket
Ssupport> CoCreat	< 0.001	Signifikan	Ssupport> BEng> CoCreat	0.068	Tidak Signifikan
SCValue> CoCreat	< 0.001	Signifikan	SCValue> BEng> CoCreat	< 0.001	Signifikan
SCInf> CoCreat	< 0.001	Signifikan	SCInf> BEng> CoCreat	0.045	Signifikan

Pengaruh variabel *Social Support* terhadap Variabel *Co Creation Intention* dengan *Brand Engagement* sebagai variabel Mediasi.

- Pengaruh langsung variabel Social Support terhadap Variabel Co Creation Intention terbukti signifikan, P value (<0.001) < signifikansi α (0.05)</p>
- Pengaruh tidak langsung variabel Social Support terhadap Variabel Co Creation Intention terbukti tidak signifikan P value (0.068) > signifikansi α (0.05)

Dengan demikian dapat disimpulkan Bahwa Variabel *Brand Engagement* tidak memediasi pengaruh variabel *Social Support* terhadap Variabel *Co Creation Intention*.

Pengaruh variabel Social Commerce Value terhadap Variabel Co Creation Intention dengan Brand Engagement sebagai variabel Mediasi.

- Pengaruh langsung variabel Social Commerce Value terhadap Variabel Co Creation Intention terbukti signifikan, P value (<0.001) < signifikansi α (0.05)</p>
- Pengaruh tidak langsung variabel Social Commerce Value terhadap Variabel Co Creation Intention terbukti signifikan P value (<0.001) < signifikansi α (0.05)</p>

Dengan demikian dapat disimpulkan Bahwa Variabel Brand Engagement memediasi sebagian (Partial Mediation) pengaruh variabel Social Commerce Value terhadap Variabel Co Creation Intention.

Pengaruh variabel Social Commerce Information Sharing terhadap Variabel Co Creation Intention dengan Brand Engagement sebagai variabel Mediasi.

- Pengaruh langsung variabel Social Commerce Information Sharing terhadap Variabel Co Creation Intention terbukti signifikan, P value (<0.001) < signifikansi α (0.05)</p>
- Pengaruh tidak langsung variabel Social Commerce Information Sharing terhadap Variabel Co Creation Intention terbukti signifikan P value (0.045) < signifikansi α (0.05)</p>

Dengan demikian dapat disimpulkan Bahwa Variabel *Brand Engagement* memediasi sebagian (*Partial Mediation*) pengaruh variabel *Social Commerce Information Sharing* terhadap *Variabel Co Creation Intention*.

PENGUJIAN MODEL MODERASI DALAM PLS SEM

Analisis variabel moderasi digunakan untuk menentukan apakah suatu variabel mampu memperkuat atau memperlemah pengaruh variabel independen terhadap variabel dependen. Metode yang digunakan untuk memeriksa variabel moderasi dalam buku pelatihan ini adalah metode interaksi. Metode pemeriksaan variabel moderasi dilakukan dengan (a) memeriksa pengaruh variabel moderasi terhadap variabel dependen, (b) memeriksa pengaruh interaksi variabel independen dengan variabel moderasi terhadap variabel dependen.

No	Kriteria Koefisien	Tipe Moderasi
1	(a) : signifikan	Moderasi Sebagian
	(b) : signifikan	(Quasi Moderator)
2	(a) : tidak signifikan	Moderasi Sempurna
	(b) : signifikan	(Pure Moderator)
3	(a) : signifikan(b) : tidak signifikan	Independen
4	(a) : tidak signifikan	Berpotensi sebagai moderator
	(b) : tidak signifikan	(Homologizer)

Tabel 1.9 Klasifikasi Variabel Moderasi

Sumber: Solimun, et al.,2017

Kita akan mulai latihan pengujian model moderasi dengan desain penelitian sebagai berikut:

Gambar 1.10 Design Penelitian dengan Pengujian Model Moderasi

» Lakukan Langkah yang sama seperti yang telah kalian pelajari mulai dari Proceed to step 1 hingga Proceed to step 4 hingga muncul tampilan dibawah ini (create laten Variable)

WarpPLS 8.0	0 - Create or edit the SEM model	11	0	×
Model options	s Latent variable options Direct link options Moderating link options Help			
	Create latent variable Choose one of the menu options above to perform a task. Edit latent variable You should start by creating latent variables, using the latent variable menu options. You can then drag and drop them, and create links among them.) Delete latent variable Move latent variable			
	SSupport (R)44			
	CoCreate (R)31 (R)31			
	SCinf (R)3i			
	BEng (R)3i			

» Buat direct link hingga semua variabel laten terhubung seperti dibawah ini. PERHATIKAN. Variabel laten BEng adalah variabel moderasi. Untuk menguji efek moderasi variabel BEng kita perlu membandingkan nilai signifikansi variabel moderasi terhadap variabel dependen dengan nilai signifikansi interaksi variabel independen dengan variabel moderasi terhadap variabel dependen. Oleh karena itu kita harus menarik direct link dari variabel moderasi (BEng) ke variabel dependen (CoCreate) supaya warppls mengeluarkan nilai signifikansi variabel moderasi (BEng) terhdap variabel dependen (CoCreate)

» Buat moderating link » Moderating link options » Create moderating link. (klik kursor di variabel laten hingga berubah warna kemudian klik di garis direct link)

» Model options » Save model and close

» Proceed to step 5

» Perform SEM analysis

WarpPLS 8.0 - Step 5: Perform the SEM analysis and view the results -	ð	×	
Help			
You are now in Step 5: Perform the SEM analysis and view the results. When you press the "Perform SEM analysis" button, the software will perform the SEM analysis. This, the software will calculate the parameters of the model, which include path coefficients, weights, loadings, and respective P values. Once the analysis is completed, you will see the results shown on a graph with the model. You will ben be able to see different results items through menu options, and also to save those results to text files so that they can be used later. This is the last step. After it is completed, you can go back to the main window and save your project file, and/or rdos some or all of the steps. Once a step is redone, all subsequent steps have to be redone as well. Press the "Perform SEM analysis" button when you are ready to perform the SEM analysis and view the results. Press the "ioo back" button to go back to the main window. For more help, click on the "Help" menu option at the top of this window.			

» Save » Save data into a tab-delimited .txt file

» Simpan berikan nama misalnya output moderasi

itter the nume of a m	e to save the data.		×			
Save in: 🔁 Mod	lul warppls	+ 🗈 💣 💷 -				
k access	∽ put hasil latihan1	Date modified 8/7/2022 1:16 AM	Type Text [BEng*SCInf	BEng*SCValue BEng*SSupport	
				0.050		
oraries			- 1	0.050	0.816	
stwork	: output moderan		iave			
Save as	ype: (*.txt)	- C	ancel			

» Klik Yes

» Hasil SEM analysis

» Silahkan saudara lakukan Evaluasi Outer model dan Inner model seperti yang sudah anda pelajari sebelumnya sebelum melanjutkan ke pengujian hipotesis (pengaruh moderasi)

» Hasil nilai koefisien jalur	(path coefficients)	dan Signifikansi (Pvalue)
-------------------------------	---------------------	---------------------------

aurcoenicients								
	SSupport	SCValue	SCInf	CoCreate	BEng	BEng*SCInf	BEng*SCValue	BEng*SSupport
SSupport		1						
SCValue								
SCInf								
CoCreate	0.232	0.259	0.186		0.263	-0.039	0.029	-0.002
BEng								
BEng*SCInf								
BEng*SCValue								
BEng*SSupport								
Values								
values	Ciunaat	CValue	Schef	CoCuetto	PEng	REng*5Clipf	BEns*CCV-slu	PEas*CSupport
? values	SSupport	SCValue	SCInf	CoCreate	BEng	BEng*SCInf	BEng*SCValue	BEng*SSupport
Values SSupport SCValue	SSupport	SCValue	SCInf	CoCreate	BEng	BEng*SCInf	BEng*SCValue	BEng*SSupport
Values SSupport SCValue SCInf	SSupport	SCValue	SCInf	CoCreate	BEng	BEng*SCInf	BEng*SCValue	BEng*SSupport
Values SSupport SCValue SCInf CoCreate	SSupport	SCValue	SCinf	CoCreate	BEng <0.001	BEng*SCInf	BEng*SCValue	BEng*SSupport
Support SCValue SCInf CoCreate BEng	SSupport	SCValue <0.001	SCInf <0.001	CoCreate	BEng <0.001	BEng*SCInf 0.228	BEng*SCValue	BEng*SSupport 0.487
SSupport SCValue SCInf CoCreate BEng SEng SCInf	<0.001	SCValue <0.001	SCInf <0.001	CoCreate	8Eng	BEng*SCInf 0.228	BEng*SCValue	BEng*SSupport 0.487
Support SCValue SCInf CoCreate BEng*SCInf BEng*SCInf	<0.001	SCValue <0.001	SCInf <0.001	CoCreate	BEng <0.001	BEng*SCInf	BEng*SCValue	BEng*SSupport 0.487
Support SCValue SCInf CoCreate BEng SCInf BEng'SCValue BEng'SCValue	SSupport <0.001	SCValue <0.001	SCInf <0.001	CoCreate	8Eng	BEng*SCInf 0.228	BEng*SCValue	BEng*SSupport

Tabel 1.10 Pengujian Variabel Moderasi

Mediator	Jalur	Koefisien	Signifikansi	Kesimpulan Moderasi	
Brand Engagement (antara Social Support	(a)	0.263	<0.001	Indonandan	
terhadap Co Creation Intention)	(b)	-0.002	0.487	independen	
Brand Engagement (antara Social Commerce	(a)	0.263	<0.001	Indonandan	
Value terhadap Co Creation Intention)	(b)	0.029	0.293	independen	
Brand Engagement (antara Social Commerce	(a)	0.263	<0.001	Indonondon	
terhadap Co Creation Intention)	(b)	-0.039	0.228	maependen	

Hasil pengujian model moderasi dengan cara interaksi seperti ditampilkan dalam Tabel. 1.10 diatas menunjukan bahwa variabel *Brand Engagement* tidak memoderasi Pengaruh *Social support, Social Commerce Value* dan *Social Commerce Information Sharing* terhadap *Co Creation Intention.*

BAB XII EVIEWS

I. DATA TIME SERIES

Suatu penelitian dilakukan mengenai pengaruh pertumbuhan perusahaan (*growth*) dan kebijakan dividen terhadap struktur modal. Berikut adalah data yang dikumpulkan:

Tahun	Growth	DPR	DER
2000	0.52	0.75	0.64
2001	0.55	0.4	0.36
2002	0.6	0.3	0.36
2003	0.32	0.15	0.45
2004	0.65	0.22	0.55
2005	0.63	0.35	0.7
2006	0.21	0.65	0.7
2007	0.55	0.75	0.23
2008	0.36	0.7	0.55
2009	0.36	0.2	0.63
2010	0.52	0.66	0.85

Berdasarkan data tersebut, dilakukan pengolahan data dengan *software* eviews. Berikut adalah langkah-langkah pengolahannya:

Input data:

- 1. Ketik data ke excel sesuai dengan data pada soal dan save dengan format excel.
- 2. Buka *software* eviews, kemudian klik: *File* →*New* →*Workfile*.

EViews	Material Autority Auto	Bella Ballines	PMD and and		
File Edit Object View	Proc Quick Options Wind	ow Help			
<u>N</u> ew	Workfile Ctrl+N				
Open •	Database				
Save Ctrl+S	Program				
Save <u>A</u> s	<u>I</u> ext File				
Close					
Import +					
Export +					
Print Ctrl+P					
Prin <u>t</u> Setup					
<u>Bun</u> F10					
Exit					
		1	Path = c:\users\hendra -pc\documents	DB = none	WF = none

- 3. Ketik start date dengan 2000 dan end date dengan 2010 sesuai data pada soal.
- 4. Lakukan import data dengan cara:
 - a. Klik*file*
 - b. Import
 - c. Import from file
 - d. Pilih data excel yang telah dibuat sebelumnya
 - e. Open
 - f. Finish
- 5. Lakukan pengolahan data dengan langkah-langkah:
 - a. *Block* variabel yang akan diolah dengan mem-*block* terlebih dahulu variabel dependen, dan diikuti dengan variabel independennya.
 - b. Klik kanan, Open, dan klik as equation

EViews	View Date Onich Online With	enc uno Ast	autors ages		
Workfile: UN	TITLED	_ X)		
View Proc Obje	ct Print Save Details+/- Show Fetch	Store Delete Genr Sample			
Range: 2000 20	010 - 11 obs	Filter: *			
B c M der M dpr M growth	0				
resid	<u>Open</u>	as Equation			
	C <u>o</u> py Ctrl+C <u>Paste</u> Ctrl+V <u>P</u> aste Special	as <u>F</u> actor as <u>V</u> AR			
	<u>M</u> anage Links & Formulae <u>F</u> etch from DB <u>S</u> tore to DB Object <u>c</u> opy <u>E</u> xport to file	as <u>ay</u> stern as <u>M</u> ultiple series			
• Untitled	<u>R</u> ename F2 <u>D</u> elete				
		Path = c:\users	\hendra -pc\documents	DB = none	WF = untitled

- c. Pada tampilan *Equation estimation* akan terlihat nama variabel yang akan diolah, kemudian tekan **Ok**.
- d. Setelah itu akan muncul output regresi sebagai berikut:

EViews	augusta	a subscra	Autor	Statistics.	man .					
File Edit	Object View Proc Q	uick Options	Window He	lp						
	= Equation: UNTITLED	Workfile: UNT	TLED::Untitled		- = x					
Ess Wor	View Proc Object Prin	t Name Freeze	Estimate For	ecast Stats R	esids	-				
Range:	Dependent Variable: D	FR								
Sample	Method: Least Squares									
B C	Date: 12/01/16 Time: 2 Sample: 2000 2010	20:02								
M dpr	Included observations:	11								
resic	Variable	Coefficient	Std. Error	t-Statistic	Prob.					
	DPR	0.084307	0.266320	0.316563	0.7597					
	GROWTH	-0.248201	0.440590	-0.563337	0.5886					
		0.020800	0.204057	2.373900	0.0450					
	R-squared	0.055029	Mean depend	lent var	0.547273					
	S.E. of regression	0.198632	Akaike info cri	iterion	-0.167724					
	Sum squared resid	0.315638	Schwarz criter	rion	-0.059207					
	F-statistic	0.232933	Durbin-Watso	n stat	1.337295					
	Prob(F-statistic)	0.797397								
<+\ Un										
-				Path :	c:\users\hend	Ira -pc\documents	DB = none	WF = untitled		

e. Dari output tersebut, dapat dibuat persamaan sebagai berikut:

DER = 0,626866 + 0,084307 DPR - 0,248201 GROWTH

6. Melakukan Uji Asumsi Klasik

Sebelum menganalisis pengaruh masing-masing variabel independen terhadap variabel dependennya, terlebih dahulu dilakukan pengujian asumsi klasik, yaitu:

a. Uji Multikolinearitas

Langkah-langkah:

 Multikolinearitas adalah pengujian untuk mengetahui apakah terdapat korelasi yang erat antara variabel independen. Oleh karena itu, block variabel independen yang akan diuji, kemudian klik Quick → Group Statistic → Correlations

 Setelah itu akan muncul hasil correlation antar variabel independen. Kriteria uji multikolinearitas adalah jika nilai *correlation* berada di bawah 0,80, maka dapat disimpulkan tidak terdapat multikolienaritas.

	DPR	GROWTH
DPR	1	-0.11742610
GROWTH	-0.11742610	1

b. Uji Autokorelasi

Untuk pengujian autokorelasi dapat menggunakan nilai Durbin Watson yang ditampilkan pada output sebelumnya. Kriterianya adalah: tidak ada autokorelasi jika nilai Durbin Watson berada di antara du dan 4-du.

c. Uji Heteroskedastisitas

Pengujian heteroskedastisitas dapat menggunakan uji White dengan prosedur:

1) Pada hasil estimasi, klik *View* → *Residual Diagnostic* → *Heteroskedasticity Test*.

- EViews [Equation: UNTITLED Workfile: UNTITLED::Untitled\] 0 23 E File Edit Object View Proc Quick Options Window Help σx View Proc Object Print Name Freeze Estimate Forecast Stats Resids Dependent Variable: DER Method: Least Squares Date: 12/01/16 Time: 20:26 Sample: 2000 2010 Included observations: 11 **X** Heteroskedasticity Tests Variable Coeffic Specification DPR 0.084 Test type: GROWTH -0.2482 Dependent variable: RESID^2 Breusch-Pagan-Godfrey C Harvey Glejser ARCH The White Test regresses the squared residuals on the the cross product of the original regressors and a constant. R-squared Adjusted R-squared 0.055 -0.1812 0.1986 0.3156 3.9224 S.E. of regression Sum squared resid Custom Test Wizard... V Include White cross terms Log likelihood F-statistic Prob(F-statistic) 0.232 ОК Cancel Path = c:\users\hendra -pc\documents DB = none WF = untitled
- 2) Setelah itu, pilih White pada kotak Specification, dan Ok

3) Kriteria pengujian:

Uji White menggunakan hipotesis:

H₀: tidak ada heteroskedastisitas

Ha: terdapat heteroskedastisitas

Jika nilai prob pada baris "Obs*R-squared" $\leq \alpha$, maka H₀ ditolak.

Dari hasil uji White didapatkan output sebagai berikut:

Heteroskedasticity Test: White

F-statistic	1.844261	Prob. F(5,5)	0.2590
Obs*R-squared	7.132563	Prob. Chi-Square(5)	0.2110
Scaled explained SS	2.635291	Prob. Chi-Square(5)	0.7560

Berdasarkan hasil tersebut, diketahui nilai Prob. Chi-Square pada baris Obs*Rsquared bernilai 0,2110. Nilai ini lebih besar daripada 0,05 sehingga dapat disimpulkan bahwa tidak terdapat heteroskedastisitas pada data. d. Uji Normalitas

- Uji normalitas menggunakan uji Jarque Berra. Hipotesis dalam pengujian ini adalah:
- H₀: Data residual terdistribusi normal
- Ha: Data residual tidak terdistribusi normal.

Langkah-langkah dalam melakukan uji normalitas:

1) Pada hasil estimasi, klik View → Residual Diagnostic → Histogram–Normality Test

2) Kemudian akan muncul output sebagai berikut:

Dari hasil pengolahan didapatkan nilai Probability sebesar 0,905595. Nilai ini lebih besar dari 0,05, berarti dapat disimpulkan bahwa data residual terdistribusi normal.

7. Pengujian Hipotesis

Untuk melakukan pengujian hipotesis, kita membutuhkan output hasil pengolahan data sebelumnya:

EViews File Edit	Object View Proc Q	uick Options	Window Hel	p	Plat	andrain degle		
View Pr Range: Sample	Equation: UNTITLED View Proc Object Prin Dependent Variable: D Method: Least Squares Date: 12/01/16 Time: Sample: 2000 2010 Extinute these stices	Workfile: UNT t]Name Freeze ER 20:02	ITLED::Untitled\ [Estimate Fore	ecast Stats R	_ 🗆 X esids			
M dpr M grow resid	Variable DPR	11 Coefficient 0.084307	Std. Error	t-Statistic	Prob.			
	GROWTH C	-0.248201 0.626866	0.440590 0.264057	-0.563337 2.373980	0.5886 0.0450			
	R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.055029 -0.181214 0.198632 0.315638 3.922484 0.232933 0.797397	Mean depend S.D. depende Akaike info cri Schwarz criter Hannan-Quin Durbin-Watso	lent var nt var terion rion n criter. on stat	0.547273 0.182762 -0.167724 -0.059207 -0.236129 1.337295			
∢ ⊧ Un								
				Path :	= c:\users\henc	dra -pc\documents	DB = none V	VF = untitled

Dari output tersebut, kita dapat melakukan pengujian secara bersamaan dan secara parsial.

a. Model Fit (Uji F)

H₀: $\beta_1 = \beta_2 = 0$

Ha: $\beta k \neq 0$

Nilai Prob (F-statistic) adalah 0,797397. Nilai ini lebih besar daripada 0,05 sehingga dapat disimpulkan Ho tidak ditolak, yang berarti tidak ada pengaruh yang signifikan dari seluruh variabel independen terhadap DER atau model tidak sesuai dengan data.

b. Pengujian secara parsial

Pengujian secara parsial dilakukan untuk mengetahui apakah terdapat pengaruh masingmasing variabel independen terhadap DER. Variabel independen dalam penelitian ini berjumlah dua variabel, sehingga dilakukan dua kali pengujian parsial, yaitu:

1) Pengujian β_1

H₀: $\beta_1 = 0$ (tidak ada pengaruh yang signifikan variabel DPR terhadap DER)

Ha: $\beta_1 \neq 0$ (terdapat pengaruh yang signifikan variabel DPR terhadap DER)

Nilai Prob. pada variabel independen pertama (DPR) adalah 0,7597. Nilai ini lebih besar daripada 0,05 sehingga dapat disimpulkan bahwa tidak terdapat pengaruh yang signifikan dari variabel DPR terhadap DER.

2) Pengujian β_2

H₀: $\beta_2 = 0$ (tidak ada pengaruh yang signifikan variabel *growth* terhadap DER) Ha: $\beta_2 \neq 0$ (terdapat pengaruh yang signifikan variabel *growth* terhadap DER) Nilai Prob. pada variabel independen kedua (*growth*) adalah 0,5886. Nilai ini lebih besar daripada 0,05 sehingga dapat disimpulkan bahwa tidak terdapat pengaruh yang signifikan dari variabel *growth* terhadap DER.

3) Koefisien Determinasi Ganda

Untuk mengetahui seberapa besar variasi dependen yang dapat dijelaskan oleh variasu variabel independen-nya, digunakan nilai *Adjusted R Square*. Nilai *Adjusted R Square* pada penelitian ini adalah sebesar -0,181214 atau -18,12%. Nilai minus dapat diartikan bahwa tidak ada kontribusi berarti dari seluruh variabel independen terhadap variabel dependen.

II. DATA PANEL

Contoh:

Suatu penelitian dilakukan mengenai pengaruh kebijakan dividen (DPR) dan pertumbuhan perusahaan (*growth*) terhadap volatilitas harga saham (PV). Berikut adalah data sampel dari tahun 2013 – 2015 dari beberapa perusahaan manufaktur di BEI:

TAHUN	Perusahaan	PV	DPR	GRO
2013	AMFG	0.36	0.10	0.14
2014	AMFG	0.34	0.07	0.11
2015	AMFG	0.57	0.15	0.35
2013	ARNA	1.32	0.40	0.55
2014	ARNA	0.35	0.30	0.35
2015	ARNA	0.88	0.55	0.55
2013	CPIN	0.74	0.30	0.27
2014	CPIN	0.32	0.22	0.17
2015	CPIN	1.00	0.44	0.22
2013	DPNS	0.59	0.23	0.16
2014	DPNS	0.42	0.20	0.05
2015	DPNS	0.38	0.18	0.02
2013	EKAD	0.40	0.20	0.25

2014	EKAD	0.33	0.17	0.20
2015	EKAD	0.57	0.25	0.30
2013	INAI	0.45	0.10	0.25
2014	INAI	0.96	0.35	0.48
2015	INAI	0.34	0.10	0.35
2013	INTP	0.50	0.17	0.65
2014	INTP	0.32	0.10	0.09
2015	INTP	0.46	0.22	-0.04

Berdasarkan data tersebut, dilakukan pengolahan data dengan *software* eviews. Berikut adalah langkah-langkah pengolahannya:

- Setelah kita berada pada *window* eviews, maka terlebih dahulu kita harus membuat *workfile*.
 Prosedur membuat *workfile* adalah sebagai berikut:
 - a. Klik file dan new, yang dilanjutkan dengan memilih opsi workfile
 - b. Kemudian pilih balanced panel.
 - c. Pada kotak start date, isikan dengan tahun awal, yaitu 2013 pada contoh ini.
 - d. Pada kotak end date, isikan dengan tahun akhir, yaitu 2015 pada contoh ini.
 - e. Pada *number of cross section*, isikan jumlah perusahaan per tahun. Pada contoh ini berarti diisi dengan 7.
- 2. Lakukan import data dengan cara:
 - a. Klik *file*
 - b. Import
 - c. Import from file
 - d. Read
 - e. Pilih data excel yang telah dibuat sebelumnya.
 - f. Open
 - g. Pada kotak *upper left data cell* isikan dengan kolom dimana angka pertama berada. Pada contoh ini angka pertama pada excel berada pada kolom C2.
 - h. Pada kotak name for series, ketik jumlah variabel yang digunakan pada data. Pada soal ini, terdapat tiga variabel yang digunakan yaitu growth, DPR, dan DER, sehingga kita ketik dengan "3".
 - i. Finish

- 3. Lakukan pengolahan data dengan langkah-langkah:
 - a. *Block* variabel yang akan diolah dengan mem-*block* terlebih dahulu variabel dependen,
 dan diikuti dengan variabel independennya.
 - b. Klik kanan, Open, dan klik as equation
 - c. Pada tampilan *Equation estimation* akan terlihat nama variabel yang akan diolah, kemudian tekan Ok.
 - d. Pada panel option, pilih random pada pilihan cross-section

pecification Pane	Options Options	
Effects specifica	tion	
Cross-section:	None	
Period:	None Fixed Random	
GLS Weights	No weights -	
	method	
Ordinary	-	
No d.f. cor	ection	

4. Setelah itu akan muncul output regresi sebagai berikut:

Periods included: 3 Dependent Variable: PV Method: Panel EGLS (Cross-section random effects) Date: 12/07/16 Time: 01:31 Sample: 2013-2015 Cross-sections included: 7 Total panel (balanced) observations: 21 Swamy and Arora estimator of component variances

Variable	Coefficient	Std. Error	t-Statistic	Prob.
DPR	1.502566	0.374282	4.014531	0.0008
GRO	0.351569	0.254029	1.383974	0.1833
С	0.117362	0.089541	1.310699	0.2064

	1	S.D.	Rho
Cross-section random	1	0.000000	0.0000
Idiosyncratic random	0.184513	1.0000	
	Weighted	Statistics	
R-squared	0.667306	Mean dependent var	0.552381
Adjusted R-squared	0.630340	S.D. dependent var	0.275516
S.E. of regression	0.167513	Sum squared resid	0.505089
F-statistic	18.05192	Durbin-Watson stat	2.280337
Prob(F-statistic)	0.000050		
	Unweighted	d Statistics	
R-squared	0.667306	Mean dependent var	0.552381
Sum squared resid	0.505089	Durbin-Watson stat	2.280337

Effects Specification

Output tersebut adalah hasil pengolahan dengan model efek acak (*random effect model*). Sebelum kita menganalisis, kita harus memilih model yang baik untuk data yang kita miliki.

Estimasi Model

Analisis model data panel memiliki model pendekatan efek tetap (*fixed effect model*), dan pendekatan efek acak (*random effect model*).

Kita dapat memilih pendekatan lain yang dapat digunakan pada model data panel. Dengan prosedur yang sama seperti sebelumnya. Perbedaannya yaitu pada penggunaan *Panel Option* dari box *Equation Estimation*.

Kita dapat memilih *Fixed* untuk pendekatan *fixed effect model*, dan *Random* untuk pendekatan *random effect model*.

Dengan menggunakan Eviews kita dapat langsung memilih pendekatan terbaik yang dapat digunakan, prosedurnya adalah sebagai berikut: Pastikan kita berada pada window hasil estimasi dengan pendekatan *Random Effect*, kemudian klik *View*, pilih *Fixed/Random Effect Testing, Correlated Random Effect-Hausman Test*, lalu klik.

EViews		. 0 %
File Edit Object View Proc Quick Options Window Help		
Equation Estimation		
Workfile: UNTITLED		
View Proc Object Prize Specification Panel Options Options		
Range: 2013 2015 x 7Effects specification		
Sample: 2013 2015 - Cross-section: None		
Crossid		
V dateid Period: Fixed		
Weights		
Ø pv		
_Coef covariance method		
Ordinary		
	Ý.	
() Untitled New P		
Path = c:\users\hendra -pc\documents	DB = none	WF = untitled

Hausman Test digunakan untuk memilih yang terbaik antara *Fixed Effect Model* (FEM) dengan *Random Effect Model* (REM).

Ho: Model Random

Ha: Model Fixed

EViews		
File Edit Object View Proc Quick Opti	ions Window Help	
Workfile: UNTITLED View Proc Object Print Save Details+/- S	Equation: UNTITLED Workfile: UNTITLED::Untitled\ View Proc Object Print Name Freeze Estimate Forecast Stats Resids	= x
Range: 2013 2015 x7 21 obs Sample: 2013 2015 21 obs C c C crossid dateid C dateid	Regresentations Estimation Output Image: Fixed/Random Effects Actual, Fitted, Residual	E
M gro M gro M pv resid	Gradients and Derivatives	=
	Coefficient Diagnostics 0.407889 -0.154002 0.879 Fixed/Random Effects Testing Redundant Eixed Effects - Like	= 3 lihood Ratio
	Residual Diagnostics	lausman Test
	Label S.D. Rho	_
	Cross-section random 0.00000 0.000 Idiosyncratic random 0.241911 1.000	0
Untitled New Page /	Weighted Statistics	
	R-squared 0.275366 Mean dependent var 0.55150 Adjusted R-squared 0.194851 S.D. dependent var 0.27534 S.E. of regression 0.247068 Sum squared resid 1.09876 E-statistic 3.420067 Durbin-Watson stat 2.53782	3 6 8 5
	Path = c:\users\hendra -pc\documents DB = none	WF = untitled

Setelah diklik akan muncul output sebagai berikut:

zero.

Correlated Random Effects - Hausman Test					
Equation: Untitled					
Test cross-section random ef	fects				
	Chi-Sq.				
Test Summary	Statistic Chi-	Sq. d.f.	Prob.		
Cross-section random	1.518806	2	0.4679		
** WARNING: estimated cr	ross-section random e	effects va	riance is		

Jika nilai Prob < 0,05 berarti Ho ditolak. Dari *output* di atas diketahui nilai Prob adalah 0,4679 yang lebih besar daripada 0,05 sehingga disimpulkan Ho tidak ditolak. Dengan demikian, model yang cocok adalah *random effect model*.

Setelah itu kita kembali melakukan pengolahan dengan *panel option* pada *random*. Berikut adalah outputnya:

Dependent Variable: PV Method: Panel EGLS (Cross-section random effects) Date: 11/23/20 Time: 15:07 Sample: 2013 2015 Periods included: 3 Cross-sections included: 7 Total panel (balanced) observations: 21

Swamy and Arora estimator of component variances

Variable	Coefficient	Std. Error	t-Statistic	Prob.
DPR	1.502566	0.374282	4.014531	0.0008
GRO	0.351569	0.254029	1.383974	0.1833
С	0.117362	0.089541	1.310699	0.2064

		S.D.	Rho
Cross-section random	1	0.000000	0.0000
Idiosyncratic random	0.184513	1.0000	
	Weighted	Statistics	
R-squared	0.667306	Mean dependent var	0.552381
Adjusted R-squared	0.630340	S.D. dependent var	0.275516
S.E. of regression	0.167513	3 Sum squared resid 0.5	
F-statistic	18.05192	Durbin-Watson stat	2.280337
Prob(F-statistic)	0.000050		
	Unweighted	1 Statistics	
R-squared	0.667306	Mean dependent var	0.552381
Sum squared resid	0.505089	39 Durbin-Watson stat 2.280	

Effects Specification

Dari output tersebut, dapat dibuat persamaan sebagai berikut:

PV = 0,117362 + 0,351569 GRO + 1,502566 DPR + e

Setelah itu, kita dapat melakukan pengujian secara bersamaan dan secara parsial.

a. Model Fit (Uji F)

 $H_0:\,\beta_1=\beta_2=0$

Ha: $\beta k \neq 0$

Nilai Prob (*F-statistic*) adalah 0,00005. Nilai ini lebih kecil daripada 0,05 sehingga dapat disimpulkan Ho ditolak, yang berarti minimal ada satu variabel independen yang mempengaruhi PV atau model sesuai dengan data.

b. Pengujian secara parsial

Pengujian secara parsial dilakukan untuk mengetahui apakah terdapat pengaruh masingmasing variabel independen terhadap PV. Variabel independen yang digunakan dalam penelitian ini berjumlah dua variabel, sehingga dilakukan dua kali pengujian parsial, yaitu:

1) Pengujian β_1

H₀: $\beta_1 = 0$ (tidak ada pengaruh yang signifikan variabel *growth* terhadap PV)

Ha: $\beta_1 \neq 0$ (terdapat pengaruh yang signifikan variabel *growth* terhadap PV)

Nilai Prob. pada variabel independen pertama (*growth*) adalah 0,1833. Nilai ini lebih besar daripada 0,05 sehingga dapat disimpulkan bahwa tidak terdapat pengaruh yang signifikan dari variabel *growth* terhadap PV.

2) Pengujian β_2

H₀: $\beta_2 = 0$ (tidak ada pengaruh yang signifikan variabel DPR terhadap PV)

Ha: $\beta_2 \neq 0$ (terdapat pengaruh yang signifikan variabel DPR terhadap PV)

Nilai Prob. pada variabel independen kedua (DPR) adalah 0,0008. Nilai ini lebih kecil daripada 0,05 sehingga dapat disimpulkan bahwa terdapat pengaruh yang signifikan dari variabel *DPR* terhadap PV.

3) Koefisien Determinasi Ganda

Untuk mengetahui seberapa besar variasi variabel dependen yang dapat dijelaskan oleh variasi variabel independen-nya, digunakan nilai *adjusted R square*. Nilai *adjusted R square* pada penelitian ini adalah sebesar 0,6303 atau 63,03%. Hal ini berarti variasi independen dapat menjelaskan variasi variabel PV sebesar 63,03%, dan sisanya dijelaskan oleh faktor lain yang tidak dimasukkan ke dalam model penelitian.

Melakukan Uji Asumsi Klasik

Sebelum menganalisis pengaruh masing-masing variabel independen terhadap variabel dependennya, terlebih dahulu dilakukan pengujian asumsi klasik, yaitu:

a. Uji Multikolinearitas

Langkah-langkah:

- Multikolinearitas adalah pengujian untuk mengetahui apakah terdapat korelasi yang erat antara variabel independen. Oleh karena itu, *block* variabel independen yang akan diuji, kemudian klik Quick → Group Statistic → Correlation
- Setelah itu akan muncul hasil *correlation* antar variabel independen. Kriteria uji multikolinearitas adalah jika nilai *correlation* berada di bawah 0,80, maka dapat disimpulkan tidak terdapat multikolienaritas.

	GRO	DPR
GRO	1.000000	0.468194
DPR	0.468194	1.000000

Dari hasil pengujian, diketahui bahwa nilai *correlation* berada di bawah 0,80 sehingga disimpulkan tidak ada masalah multikolinearitas pada variabel independen.

b. Uji Autokorelasi

Untuk pengujian autokorelasi dapat menggunakan nilai Durbin Watson yang ditampilkan pada output sebelumnya. Kriterianya adalah: tidak ada autokorelasi jika nilai Durbin Watson berada di antara du dan 4-du. Nilai durbin watson dapat dilihat pada output sebelumnya, yaitu 2,2803.

c. Uji Normalitas

Uji normalitas menggunakan uji Jarque Berra. Hipotesis dalam pengujian ini adalah:

H₀: Data residual terdistribusi normal

Ha: Data residual tidak terdistribusi normal.

Langkah-langkah dalam melakukan uji normalitas:

- 1) Pada hasil estimasi, klik View → Residual Diagnostic → Histogram–Normality Test
- 2) Output yang muncul adalah sebagai berikut:

Dari hasil pengolahan data diketahui nilai *probability* adalah 0,627422. Nilai ini lebih besar daripada 0,05 sehingga dapat disimpulkan bahwa data residual terdistribusi secara normal.

Praktikum 12

A. Clara merupakan seorang investor dimana Clara selalu mengamati pergerakan harga dalam pasar modal. Suatu ketika Clara tertarik untuk melakukan analisa apakah inflasi dan kurs dapat mempengaruhi IHSG. Dalam memenuhi analisa tersebut, Clara mengambil nilai rata-rata data selama 20 tahun terakhir yang ditunjukkan sebagai berikut:

Tahun	Inflasi	Kurs	IHSG
2002	0,01233	14.336	6.129
2003	0,01754	14.888	5.891
2004	0,02772	14.918	6.739
2005	0,01063	15.785	6.960
2006	0,01941	14.268	5.900
2007	0,03627	13.094	6.433
2008	0,01467	15.874	6.520
2009	0,01740	13.176	6.556
2010	0,02227	14.173	5.838
2011	0,03769	13.094	6.714
2012	0,03916	15.332	6.268
2013	0,02704	14.724	6.403
2014	0,03393	15.935	6.282
2015	0,01109	13.604	7.123
2016	0,03927	15.085	6.614
2017	0,01295	15.589	6.592
2018	0,02796	13.611	6.279
2019	0,01882	13.823	7.296
2020	0,02947	13.450	5.845
2021	0,02781	14.417	6.449

Input data di **Excel** lalu lakukan import data pada **Eviews**. Kemudian lakukan perintahperintah di bawah ini dengan menggunakan alpha 5%:

- 1. Lakukan analisa koefisien determinasi dan uji normalitas residual!
- 2. Buat persamaan regresi! Jelaskan masing-masing koefisien regresinya!
- 3. Lakukan uji F dan uji t!
- 4. Simpan data dan output dengan nama HasilPrak12A di Local Disc D
- B. David ingin meneliti faktor yang mempengaruhi Corporate Social Responsibility (CSR) pada 10 perusahaan yang terdaftar di Bursa Efek Indonessia selama tahun 2019-2021. David menilai bahwa terdapat 2 faktor yang mempengaruhi Corporate Social Responsibility yaitu Firm Size (FS) dan Leverage (LEV). Berikut data yang diperoleh David:

Tahun	Kode	FS	LEV	CSR
	Perusahaan			
2019	AALI	0,5479	0,4291	2,28
2020	AALI	0,2672	0,5535	1,98
2021	AALI	0,8189	0,6328	2,02
2019	ADRO	0,1110	0,7452	1,23
2020	ADRO	0,7416	0,1074	1,64
2021	ADRO	0,0766	0,9239	2,44
2019	ANTM	0,9287	0,3042	2,03
2020	ANTM	0,2779	0,9981	1,75
2021	ANTM	0,2996	0,6764	2,82
2019	EXCL	0,1512	0,4709	2,75
2020	EXCL	0,6776	0,4260	2,74
2021	EXCL	0,4031	0,8459	1,97
2019	GGRM	0,6155	0,6090	2,16
2020	GGRM	0,7872	0,5740	1,04
2021	GGRM	0,9092	0,5752	1,58
2019	HMSP	0,6746	0,2299	2,54
2020	HMSP	0,2907	0,7080	1,11
2021	HMSP	0,3897	0,2733	2,38
2019	ICBP	0,7280	0,6043	2,34
2020	ICBP	0,7266	0,6589	2,75
2021	ICBP	0,1966	0,3819	1,84
2019	KLBF	0,8875	0,9171	1,04
2020	KLBF	0,5661	0,9425	1,79
2021	KLBF	0,7941	0,1657	1,13
2019	PGAS	0,6438	0,3413	1,10
2020	PGAS	0,4704	0,9848	1,50
2021	PGAS	0,8008	0,0339	2,40
2019	UNVR	0,0020	0,6777	1,07
2020	UNVR	0,2265	0,7292	1,28
2021	UNVR	0,6383	0,7343	2,04

Input data di **Excel** lalu lakukan import data pada **Eviews**. Kemudian lakukan perintahperintah di bawah ini dengan menggunakan alpha 5%:

- 1. Tentukan model estimasi yang tepat digunakan dalam penelitian!
- 2. Buat persamaan regresi! Jelaskan masing-masing koefisien regresinya!
- 3. Lakukan uji pengaruh variabel independen terhadap variabel dependen!
- 4. Simpan data dan output dengan nama HasilPrak12B di Local Disc D

DAFTAR PUSTAKA

- Abu-Bader, S., & Jones, T.V. 2021. Statistical Mediation Analysis Using the Sobel Test and Hayes SPSS Process Macro. International Journal of Quantitative and Qualitative Research Methods, 9(1), 42-61.
- Baron, R. M., & Kenny, D. 1986. The Moderator-Mediator Variable Distinction in Social Psychological Research: Conceptual, Strategic, and Statistical Consideration. *Journal of Personality and Social Psychology*, 51(6), 1173-1182
- Dachlan. U. 2014. Panduan Lengkap Structural Equation Modeling. Semarang: Lentera Ilmu
- Ghozali. I., & Latan, H. 2012. Partial Least Squares Konsep, Metode dan Aplikasi Menggunakan Program WarpPLS 4.0, edisi 2. Semarang. UNDIP.
- Hair, J.F., Black, B., Babin, B., Anderson, R.E., & Tatham, R.L. 2018. *Multivariate Data Analysis*, 8th Edition. USA: Pearson.
- Hair, J.F., Hult, T., Ringle, C., & Sartstedt, M. 2017. *A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM)*, Second Edition. Los Angeles: SAGE.
- Hartanto. D.P. 2019. Structural Model SEM PLS GSCA. Arena Statistik
- Jogiyanto. 2004. Metodologi Penelitian Bisnis: Salah Kaprah dan Pengalaman-Pengalaman. Yogyakarta: BPFE.
- Kock. N. 2021. WarpPLS 7.0 User Manual, Ned Kock
- Sekaran, U., & Bougie, R. 2020. *Research Methods for Business A Skill-Building Approach*,
 8th edition. United Kingdom: John Wiley & Sons.
- Sholihin. M., & Ratmono. D. 2020. *Analisis SEM-PLS dengan WarpPLS 7.0*, Edisi 2. Yogyakarta: Andi Offset.
- Solimun., F. A. A. R., & Nurjannah. 2017. Metode Statistika Multivariat Pemodelan Persamaan Struktural (SEM) Pendekatan WarpPLS. Malang: UB Press

KAMPUS JAKARTA

Jl. Kyai Tapa No. 20 Grogol

Jakarta 11440 Indonesia

Tel +62 21 5666717

Fax +62 21 5635480

Web: tsm.ac.id

E-mail: stie@stietrisakti.ac.id

KAMPUS BEKASI

Jl. Raya Siliwangi No. 74 Rawalumbu

Bekasi 17114 Indonesia

Tel +62 21 82735050

Fax +62 21 5635480

Web: tsm.ac.id

E-mail: stie@stietrisakti.ac.id

Trisakti School of Management